Виды технических носителей информации. Виды и характеристики носителей информации

1. Носитель информации как материальная составляющая документа


Сама информация не выступает достаточным признаком документа. Материальная составляющая - одно из двух необходимых и обязательных слагаемых документа, без которого он существовать не может. Материальная составляющая документа - это его вещественная (физическая) сущность, форма документа, обеспечивающая его способность хранить и передавать информацию в пространстве и времени. Материальную составляющую документа определяет материальный носитель информации - материальные объекты, в которых сведения (данные) находят свое отражение в виде символов, образов, сигналов, технических решений и процессов.

Предназначенность документа для хранения и передачи информации в пространстве и времени обусловливает его специфическую материальную конструкцию, представленную в виде книг, газет, буклетов, микрофиш, фильмов, дисков, дискет и т.п.

Эта специальная конструкция обеспечивает выполнение документами их главной функции, давая возможность быть удобными для перемещения в пространстве, устойчивыми для хранения информации во времени, приспособленными для физиологических возможностей чтения сообщения.

Информация, содержащаяся в документе, обязательно закреплена на каком-то специальном материале (бумага, кино-, видео-, аудио-, фотопленка и т.п.), имеющем определенную форму носителя (лента, лист, карточка, барабан, диск и т.п.). Кроме того, информация всегда фиксируется каким-либо способом записи, предусматривающим наличие средств (краска, тушь, чернила, красители, клей и т.п.) и инструментов (ручка, печатный станок, видеокамера, принтер и т.п.).

Материальная основа документа - совокупность материалов, использованных для записи сообщения (текста, звука, изображения) и составляющих носитель информации. В зависимости от материальной основы документы делятся на две большие группы: естественные и искусственные. Искусственные в свою очередь подразделяются на бумажные документы и документы на небумажной основе - полимерные документы (полимерно-пленочные и полимерно-пластиночные).

Наиболее массовым типом являются носители на бумажной основе. Большинство современных документов, функционирующих в обществе, выполнены на бумажной основе или заменителях бумаги. Их называют бумажными, т.е. имеющими бумажный носитель.

В этих носителях информация отображается в виде символов и образов. Такая информация отнесена к разряду документированной информации и представляет собой различные виды документов.

К бумажным относятся деловые документы, научно-техническая документация, книги, журналы, газеты, рукописи, карты, ноты, изоиздания, перфоленты, перфокарты и др.

Бумага соответствует многим требованиям: относительно проста в изготовлении, доступна, в меру прочна, достаточно долго хранится и позволяет легко фиксировать информацию. Самое ценное качество бумаги - она позволяет тиражировать информацию. Массовое распространение информации с помощью книгопечатания стало возможным лишь в результате промышленного изготовления бумаги.

Появление искусственных носителей на полимерной основе (шеллак, полихромвинил, полупроводник, биомасса) пополнило видовое разнообразие документов, способных нести звуковую речь, музыку, движущееся и объемное изображение. Были созданы грампластинки, магнитные пленки, фото- и кинопленки, магнитные и оптические диски - материальные носители такой информации, которая не может быть зафиксирована на бумаге.

К полимерно-пленочным документам относятся: кинодокументы (кино-, диа-, видеофильм), фотодокументы (диапозитив, микрофильм, микрокарта, микрофиша), фонодокументы (магнитные фонограммы для записи изображения и звука), документы для использования в ЭВМ (перфоленты).

Группу полимерно-пластиночных документов составляют: гибкий магнитный диск, магнитная карта, гибкая и жесткая грампластинка, оптический диск - как жесткий, так и мягкий.

Передача документированной информации во времени и пространстве непосредственно связана с физическими характеристиками её материального носителя. Документы, будучи массовым общественным продуктом, отличаются сравнительно низкой долговечностью. Во время своего функционирования в оперативной среде и особенно при хранении они подвергаются многочисленным негативным воздействиям, вследствие перепадов температуры, влажности, под влиянием света, биологических процессов и т.д.

Поэтому не случайно проблема долговечности материальных носителей информации во все времена привлекала внимание участников процесса документирования. Уже в древности наблюдается стремление зафиксировать наиболее важную информацию на таких сравнительно долговечных материалах, как камень, металл.

В процессе документирования наблюдалось стремление использовать качественные, стойкие краски, чернила.

Однако, решая проблему долговечности, человек сразу же вынужден был заниматься и другой проблемой, заключавшейся в том, что долговечные носители информации были, как правило, и более дорогостоящими. Поэтому постоянно приходилось искать оптимальное соотношение между долговечностью материального носителя информации и его стоимостью. Эта проблема до сих пор остаётся весьма важной и актуальной.

Наиболее распространённый в настоящее время материальный носитель документированной информации - бумага - обладает относительной дешевизной, доступностью, удовлетворяет необходимым требованиям по своему качеству и т.д. Однако в то же время бумага является горючим материалом, боится излишней влажности, плесени, солнечных лучей, нуждается в определённых санитарно-биологических условиях. Использование недостаточно качественных чернил, краски приводят к постепенному угасанию текста на бумаге.

В конце 20-го века с развитием компьютерных технологий и использованием принтеров для вывода информации на бумажный носитель вновь возникла проблема долговечности бумажных документов. Дело в том, что многие современные распечатки текстов на принтерах водорастворимы и выцветают. Более долговечные краски, в частности, для струйных принтеров, естественно, являются и более дорогими, а значит - менее доступными для массового потребителя. Материальные носители документированной информации требуют, таким образом, соответствующих условий для их хранения.

Таким образом, под материальной составляющей документа имеют в виду: 1) материальную основу документа; 2) форму носителя информации и 3) способ документирования или записи информации.


2. Форма материального носителя электронной информации


Научно-технический прогресс привел к появлению так называемой электронной документации. Ее специфика заключается в том, что человек не может воспринять электронный документ в том физическом виде, в каком он зафиксирован на носителе.

Кроме того, электронные документы находятся в прямой зависимости от информационных технологий, которые имеют необратимую тенденцию изменяться и устаревать по мере научно-технического прогресса в области техники и программного обеспечения. В этой связи велика опасность утраты доступа к таким документам через определенный промежуток времени.

Несмотря на массовое использование в литературе и практической деятельности термина «электронный документ», его определение еще не устоялось. Вместе с тем, ряд авторов считают, что электронный документ - это «документ, носителем которого является электронная среда - магнитный диск, магнитная лента, компакт-диск и т.д.»

В понятии электронного документа можно выделить три известные составляющие: зафиксированная информация, носитель, идентификационные реквизиты, что не выходит за рамки существующего определения документа.

К сожалению, в отличие от информации, зафиксированной на бумажном носителе, информация на машиночитаемом носителе может быть легко изменена без желания ее автора в результате несанкционированного доступа к ней постороннего лица, причем без всяких следов такого вмешательства.

Возникла проблема установления доказательственной силы машиночитаемого документа.

Классическая правовая трактовка термина документ (от лат. documentum - доказательство) связана с письменной формой хранения информации. Действительно, в традиционных бумажных документах реквизиты и содержание документа неразрывно связаны с материальным носителем документа.

В электронных же документах каждая из этих составляющих относительно самостоятельна, что обусловлено особенностями их изготовления, обработки, хранения и передачи. Эта особенность во многом определяет специфику правового статуса электронных документов.

В качестве юридических признаков документа на машинном носителе выступают:

·машинный носитель информации;

·компьютерная информация;

·реквизиты, позволяющие идентифицировать форму и содержание компьютерной информации.

Для категории электронного документа особое значение имеет четкое законодательное урегулирование его реквизитов, т. к. именно они придают информации на материальном носителе статус документа.

Технология изготовления, хранения и передачи электронных документов коренным образом отличается от письменных документов и уже в силу этого реквизиты, успешно выполняющие свои функции в традиционных документах (подпись руководителя, печать, банковские реквизиты сторон, фирменные бланки и пр.), далеко не всегда приемлемы для них. В отношении электронных документов только электронная цифровая подпись в полной мере может выполнять функции реквизита.

Распространение документированной информации, снабженной электронной цифровой подписью, в системах связи и телекоммуникации аналогично распространению оригинала документов на бумажном носителе традиционными способами.

Распространение же документированной информации на машиночитаемом носителе без электронной цифровой подписи или других аналогичных средств идентификации подобно передаче или устной информации, идентичность которой гипотетическому оригиналу может быть подтверждена показаниями свидетелей, или копии документа, по отношению к которой требуется возможными способами доказать соответствие ее оригиналу.

Таким образом, для управленческого документа существенным является носитель информации. Носители документной информации изменяются в ходе технического прогресса. С развитием новых информационных технологий появляются так называемые электронные документы, носители информации которых принципиально отличаются от «бумажных».

Перевод информации на машиночитаемые носители вместо бумажных потребовал введения новых механизмов обеспечения «юридической силы» или «доказательственной силы» документа на таком носителе, например, электронной цифровой подписи.


. Классификация документов на современных материальных носителях


Информатизация общества, бурное развитие микрографии, компьютерной техники и проникновение ее во все сферы человеческой деятельности определили появление документов на небумажных носителях информации.

Эти документы в отличие от традиционных, т.е. бумажных, как правило, требуют для воспроизведения информации использования технических средств. К этой группе принадлежат документы в виде фильмов, микрофиш, звуковых магнитных записей, а также в виде дискретных носителей для компьютерного чтения (дисков, дискет) и т.п.

Носители информации на перфолентах, перфокартах, магнитных и оптических носителях, а также прочие документы, предназначенные для перевода на другую языковую систему, принято относить к группе матричных документов. Документы на эти носителях информации, как правило, не поддаются непосредственному восприятию, считыванию.

Информация хранится на машинных носителях, а часть документов создается и используется непосредственно в машиночитаемой форме.

По предназначенности для восприятия рассматриваемые документы относятся к машиночитаемым. Это документы, предназначенные для автоматического воспроизведения находящейся в них информации. Содержание таких документов полностью или частично выражено знаками (перфорация, матричная магнитная запись, матричное расположение знаков, цифр и т.п.), приспособленными для автоматического считывания. Информация записывается на перфорационных картах или лентах, магнитных лентах, картах, дискетах, специальных бланках и подобных носителях.

Документы на современных носителях информации относятся к классу технически-кодированных, содержащих запись, доступную для воспроизведения только с помощью технических средств, в том числе звуковоспроизводящей, проекционной аппаратуры или компьютера.

Из всего массива существующих документов рассматриваемая группа выделяется по способу записи и считывания информации. В соответствии с этим признаком документы на новейших носителях информации делят на:

·документы на перфорированных носителях информации (перфорированные документы), в состав которых входят перфокарты, перфоленты, апертурные карты;

·документы на магнитных носителях информации (магнитные документы), в состав которых входят магнитные ленты, магнитные карты, магнитные диски гибкие (дискеты) и жесткие, а также видеодиски;

·документы на оптических носителях информации (оптические документы), группу которых составляют микрографические документы (микрофильмы, микродиски, микрокарты) и оптические диски;

·документы на голографических носителях информации (голографические документы). К ним относят голограммы.

По характеру связи документов с технологическими процессами в автоматизированных системах различают:

·машинно-ориентированный документ, предназначенный для записи и считывания части содержащейся в нем информации средствами вычислительной техники (заполненные специальные формы бланков, анкет и т.п.);

·машиночитаемый документ, пригодный для автоматического считывания содержащейся в нем информации с помощью сканера (текстовые, графические и другие виды записи, почтовый индекс);

·документ на машиночитаемом носителе, созданный средствами вычислительной техники, записанный на машиночитаемый носитель: магнитную ленту (МЛ), магнитный диск (МД), дискету, оптический диск и т.п. - и оформленный в установленном порядке;

·документ-машинограмма (распечатка), созданный на бумажном носителе с помощью средств вычислительной техники и оформленный в установленном порядке;

·документ на экране дисплея, созданный средствами вычислительной техники, отраженный на экране дисплея (монитора) и оформленный в установленном порядке;

электронный документ, содержащий совокупность информации в памяти вычислительной машины, предназначенный для восприятия человеком с помощью соответствующих программных и аппаратных.


. Характеристика материальных носителей информации и их развитие


Появление письменности стимулировало поиски и изобретение специальных материалов для письма. однако на первых порах человек использовал для этой цели наиболее доступные материалы, которые можно было без особых усилий найти в окружающей среде: пальмовые листья, раковины, древесную кору, черепаховые щитки, кости, камень, бамбук и т.д. к примеру, философские наставления Конфуция (середина 1 тыс. до н.э.) первоначально были записаны на бамбуковых дощечках. в Древней Греции и Риме, наряду с деревянными дощечками, покрытыми слоем воска, использовались также металлические (бронзовые либо свинцовые) таблицы, в Индии - медные пластины, а Древнем Китае - бронзовые вазы, шелк.

На территории Древней Руси писали на коре березы - бересте. К настоящему времени найдено свыше I тыс. берестяных грамот того времени, древнейшая из которых относится к первой половине XI века. археологи обнаружили даже миниатюрную берестяную книжечку из двенадцати страниц, в которой двойные листы сшиты по сгибу. Подготовка бересты к процессу записи была несложной. Предварительно ее кипятили, затем соскабливали внутренний слой коры и обрезали по краям. в результате получался материал основы документа в виде ленты или прямоугольника. Грамоты сворачивались в свиток. При этом текст оказывался с наружной стороны.

На бересте писали не только в Древней Руси, но и в Центральной и Северной Европе. Обнаружены берестяные грамоты на латыни. Известен случай, когда в 1594 г. 30 пудов бересты для письма было даже продано нашей страной в Персию.

Основным материалом для письма у народов Передней Азии первоначально являлась глина, из которой изготавливались слегка выпуклые плитки. После нанесения нужной информации (в виде клинообразных знаков) сырые глиняные плитки высушивались или обжигались, а затем помещались в специальные деревянные или глиняные ящики либо в своеобразные глиняные конверты.

Использование природных материалов для целей письма имело место и в более поздние времена. Например, в отдаленных уголках России даже в 18 веке иногда писали на бересте.

Исторически первым материалом, который специально изготовлялся для письма, был папирус. Его изобретение примерно в середине третьего тысячелетия до н.э. стало одним из важнейших достижений египетской культуры. Главными преимуществами папируса были компактность и легкость. Папирус производился из рыхлой сердцевины стеблей нильского тростника в виде тонких желтоватых листов, которые затем склеивали в полосы длиной в среднем до 10 м (их размеры достигали 40 и более м) и шириной до 30 см. Из-за большой ломкости запись на папирусе велась с одной стороны, и хранили ее в виде свитка.

Папирус использовался не только в Древнем Египте, но и в других странах Средиземноморья, причем в Западной Европе - вплоть до 20 века.

Другим материальным носителем растительного происхождения, была тапа. По преимуществу тапа использовалась в экваториальной зоне (в Центральной Америке, на Гавайских островах). Она изготавливалась из лыка, луба, в частности, бумажного шелковичного дерева. Лыко промывалось, очищалось от неровностей, а затем отбивалось молотком, разглаживалось и просушивалось. Самым известным материалом животного происхождения, специально изготавливавшемся для целей письма и получившим широкое распространение в эпоху древности и средневековья, был пергамент. В отличие от папируса, производившего только в Египте, пергамент можно было получить в любой стране, так как изготавливался он из шкур животных путем очистки, промывки, просушки, растяжки с последующей обработкой мелом и пемзой. В нашей стране пергамент тали изготовлять только в 15 веке, а до этого его привозили из-за границы.

на пергаменте можно было писать с обеих сторон. Он был гораздо прочнее и долговечнее папируса. Однако пергамент являлся весьма дорогим материалом. Этот существенный недостаток пергамента удалось преодолеть лишь в результате появления бумаги.

Бумага (от итал. «» - хлопок) была изобретена в Китае во 2 веке до н.э. В 105 г. китаец Цай Лунь усовершенствовал процесс ее изготовления, предложив использовать в качестве сырья молодые побеги бамбука, кору тутовых деревьев, ивы, а также пеньку и тряпье.

Лишь в начале 7 века секрет изготовления бумаги стал известен в Корее и Японии, затем и в других странах Востока, а в XII веке - и в Европе.

На Руси использование этого материала для письма началось в XIV веке. Первоначально бумага была привозной, однако в период правление Ивана IV в России была построена первая «бумажная мельница» около Москвы, которая просуществовала малое количество времени. Но уже в XVII столетии в стране работало 5 бумагоделательных предприятий, а в XVIII веке - 52.

До середины XIX века практически вся европейская, в том числе и российская, бумага изготавливалась из льняного тряпья. Его промывали, проваривали с содой, едким натром или известью, сильно разбавляли водой и размалывали на особых мельницах. Затем жидкую массу черпали специальной прямоугольной формой с прикрепленной к ней сеткой из проволоки. После стекания воды на металлическом сите оставался тонкий слой бумажной массы. Полученные таким образом влажные бумажные листы укладывали между отрезами грубого сукна или войлока, с помощью пресса отжимали воду и просушивали.

Металлические нити сетки оставляли на бумаге, изготовленной ручным способом, следы, видимые на просвет, поскольку бумажная масса в местах ее соприкосновения с проволокой была менее плотной. Эти следы получили название филиграней или водяного знака.

К настоящему времени известно около 175 тыс. филиграней, сделанных в разное время на бумажных мельницах и мануфактурах. Водяные знаки являлись торговой маркой, а также одним из средств защиты от подделки документов.

Между тем бумажное производство совершенствовалось и постепенно механизировалась. В 1670 г. в Голландии был изобретен ролл - механизм для измельчения волокон. Французский химик Клод Луи Бертолле в 1789 г. предложил способ отбеливания тряпья хлором, способствующий улучшению качества бумаги. А в 1798 г. француз Н.Л. Роббер получил патент на изобретение бумагоделательной машины. В России первая такая машина была установлена в 1818 г. на Петергофской бумажной фабрике. В настоящее время принцип работы бумагоделательных машин остается тем же, что и сотни лет тому назад. Однако современные машины обладают гораздо большей производительностью.

Важнейшим шагом в развитии бумагоделательного производства стало изготовление бумаги из древесины начиная с 1845 г. Это открытие связано с именем саксонского ткача Ф. Келлера. Древесное сырье становится основным в бумажной промышленности.

В 20 веке продолжалось совершенствование бумажного носителя информации. С 1950-х гг. в производстве бумаги стали применяться полимерные пленки и синтетические волокна, в результате чего появилась принципиально новая, синтетическая бумага - бумага - пластикат. Она отличается повышенной механической прочностью, стойкостью к химическим воздействиям, термостойкостью, долговечностью, высокой эластичностью и некоторыми другими ценными качествами.

Развитие материальных носителей документированной информации в целом идёт по пути непрерывного поиска объектов с высокой долговечностью, большой информационной ёмкостью при минимальных физических размерах носителя. Начиная с 1980-х годов, всё более широкое распространение получают оптические (лазерные) диски. Это пластиковые или алюминиевые диски, предназначенные для записи и воспроизведения информации при помощи лазерного луча.

В настоящее время оптические (лазерные) диски являются наиболее надёжными материальными носителями документированной информации, записанной цифровым способом.

Впервые оптический диск был разработан и продемонстрирован в 1979 г. фирмой Philips. Первая оптическая запись звуковых программ для бытовых целей осуществлена в 1982 г. фирмой Sony в лазерных проигрывателях на компакт - дисках, которые стали обозначаться аббревиатурой CD (Compact Disk).

В середине 1980-х гг. были созданы компакт - диски с постоянной памятью - CD - ROM (Compact Disk - Read Only Memory). C 1995 г. стали использоваться перезаписываемые оптические компакт - диски: CD - R (CD Recordable) и CD - E (CD Erasable).

Оптический документ аккумулирует в себе преимущества различных способов записи информации и материалов носителя. Важным достоинством данного носителя информации является, во-первых, его универсальность, т.е. возможность записи и хранения в единой цифровой форме информации любого вида - звуковой, текстовой, графической, видео. Во-вторых, оптический документ дает возможность организации и хранения информации в виде баз данных на едином оптическом носителе. В-третьих, этот документ обеспечивает возможность создания интегрированных информационных сетей, обеспечивающих доступ к таким базам данных.

Оптический документ - это интегральный вид документа, способный вобрать в себя достоинства и возможности книги, видеофильмов, аудиозаписи одновременно. Он необходим для длительного хранения больших массивов информации.

Самым перспективным видом оптического документа, выделяемым по форме носителя и особенностям пользования, является оптический диск - материальный носитель, на котором информация записывается и считывается с помощью сфокусированного лазерного луча.

Компакт-диски изготавливаются из поликарбоната толщиной 1,2 мм, покрытым тончайшим слоем алюминия (ранее использовалось золото) с защитным слоем из лака, на котором обычно печатается этикетка.

По технологии применения оптические, магнитооптические и цифровые компакт-диски делятся на 3 основных класса:

1.Диски, допускающие однократную запись и многократное воспроизведение сигналов без возможности их стирания (CD-R; CD-WORM - Write - Once, Read - Many - один раз записал, много раз считал). Используются в электронных архивах и банках данных, во внешних накопителях ЭВМ.

2.Реверсивные оптические диски, позволяющие многократно записывать, воспроизводить и стирать сигналы (CD-RW, CD-E). Это наиболее универсальные диски, способные заменить магнитные носители практически во всех областях применения.

.Цифровые универсальные видеодиски DVD (Digital Versatile Disk) типа DVD-ROM, DVD-RAM, DVD-R с большой ёмкостью (до 17 Гбайт).

Вместе с тем активно ведутся работы по созданию ещё более компактных носителей информации с использованием, так называемых нанотехнологий, работающих с атомами и молекулами. Плотность упаковки элементов, собранных из атомов, в тысячи раз больше, чем в современной микроэлектронике. В результате один компакт-диск, изготовленный по нанотехнологии, может заменить тысячи лазерных дисков.

Таким образом, внедрение оптической технологии в документно-информационную сферу может рассматриваться как начало новой эры в распространении, хранении, использовании документированной информации.

Классификация материальных носителей магнитной записи:

·геометрической форме и размерам (форма ленты, диска, карты и т.д.);

·по внутреннему строению носителей (два или несколько слоёв различных материалов);

·по способу магнитной записи (носители для продольной и перпендикулярной записи);

·по виду записываемого сигнала (для прямой записи аналоговых сигналов, для модуляционной записи, для цифровой записи).

Самым первым носителем магнитной записи, на котором фиксировалась информация в аппаратах Поульсена на рубеже 19-20 вв., была стальная проволока диаметром до 1 мм. В начале 20 столетия для этих целей использовалась также стальная катаная лента. Однако качественные характеристики этих носителей были весьма низкими. Достаточно сказать, что для производства 14-часовой магнитной записи докладов на Международном конгрессе в Копенгагене в 1908 г. потребовалось 2500 км проволоки весом около 100 кг. Кроме того, в процессе использования проволоки и стальной ленты возникала трудноразрешимая проблема соединения отдельных их кусков. Стальной магнитный диск, первый патент на который был выдан еще в 1906 г., не получил тогда применения.

Лишь со второй половины 1920-х гг., когда была изобретена порошковая магнитная лента, началось широкомасштабное применение магнитной записи. Патент на технологию нанесения ферромагнитного порошка на пленку получил в 1928 г. Фриц Пфеймер в Германии. Первоначально магнитный порошок наносился на бумажную подложку, затем - на ацетилцеллюлозу, пока не началось применение в качестве подложки высокопрочного материала - полиэтилентерефталата (лавсна). Совершенствовалось также и качество магнитного порошка. Стали использоваться, в частности, порошки оксида железа с добавкой кобальта, оксида хрома, металлические магнитные порошки железа и его сплавов, что позволило в несколько раз увеличить плотность записи. На подложку рабочий слой наносится путем вакуумного напыления или электролитического осаждении в виде магнитного порошка, связующего вещества, растворителя, пластификатора и различных добавок.

Кроме гибкой основы рабочего магнитного слоя в ленте могут быть и дополнительные слои: защитный - на поверхности рабочего слоя и антифрикционный - на тыльной стороне ленты, с целью предохранения рабочего слоя от механического износа, повышения механической прочности ленты и для улучшения ее скольжения по поверхности магнитной головки. Антифрикционный слой снимает также электрические заряды, которые накапливаются на магнитной ленте. Промежуточный (подслой) между основой и рабочим слоем служит для улучшения сцепления рабочего и антифрикционного слоев с основой.

В отличие от носителей механической звукозаписи, магнитная лента пригодна для многократной записи информации. Число таких записей очень велико и ограничивается только механической прочностью самой магнитной ленты. Первые магнитофоны, появившиеся в 1930 - е гг., были катушечными. В них магнитная лента наматывалась на катушки.

В 1963 г. фирмой Philips была разработана кассетная запись, позволившая применять очень тонкие магнитные ленты. Их максимальная толщина составляет всего 20 мкм при ширине 3,81 мм. В кассетных магнитофонах обе катушки находятся в специальном компакт-кассете и конец пленки заранее закреплен на пустой катушке. Запись на компакт-кассетах составляет обычно 60, 90 и 120 минут.

В конце 1970-х гг. появились микрокассеты размером 50*33*8 мм, т.е. величиной в спичечную коробку, для портативных диктофонов и телефонов с автоответчиками, а в середине 190-х гг. - пикокассеты - втрое меньше микрокассет.

С 1952 г. магнитная лента стала использоваться для хранения информации в электронно-вычислительных машинах. Преимуществом магнитной ленты является возможность осуществлять запись плотностью за счет того, что общая площадь поверхности магнитного слоя у ленты значительно выше, чем у остальных типов носителей, и ограничена только длинной ленты. Накопители на кассетной магнитной ленте - картриджи могут достигать емкости до 40 Гбайт.

В электронно-вычислительных машинах на первых порах использовались также магнитные барабаны.

С начала 1960-х гг. широкое применение, прежде всего в запоминающих устройствах ЭВМ, получили магнитные диски, в настоящее время они наиболее используемые в работе с документированной информацией.

Магнитный диск - носитель информации в виде диска с ферримагнитным покрытием для записи. Магнитные диски делятся на жесткие и гибкие (дискеты).

Жесткий магнитный диск (винчестер) - это круглая плоская пластинка, изготовленная из твердого материала (металла), покрытого ферримагнитным слоем. Он предназначен для постоянного хранения информации, используемой при работе с персональным компьютером и устанавливаются внутри него.

Винчестеры значительно превосходят гибкие диски. Они имеют лучшие характеристики емкости, надежности и скорости доступа к информации. Поэтому их применение обеспечивает скоростные характеристики диалога пользователя и реализуемых программ, расширяет системные возможности по использованию баз данных, организации многозадачного режима работы, обеспечивает эффективную поддержку механизма виртуальной памяти.

Гибкий диск (флоппи-диск) или дискета - это диск, изготовленный из пластика, покрытого ферримагнитным слоем. Гибкий магнитный диск широко используется в персональных компьютерах и является сменным носителем документированной информации. Он хранится вне компьютера и устанавливается в накопитель по мере необходимости.

В настоящее время чаще всего используются дискеты емкостью 1,44 Мбайт. Они позволяют переносить документ и программы с одного компьютера на другой, хранить информацию, не используемую постоянно в компьютере, делать архивные копии информации, содержащейся на жестких дисках.

Широкое применение, прежде всего в банковских системах, нашли так называемые пластиковые карты, представляющие собой устройства для магнитного способа хранения информации и управления данными.

Пластиковая карта представляет собой документ, выполненный на основе металла, бумаги или пластика стандартной прямоугольной формы, хотя бы один из реквизитов которого находится в форме, доступной восприятию средствами электронно-вычислительной техники и электросвязи. Пластиковые карты бывают двух типов: простые и интеллектуальные. В простых картах имеется лишь магнитная память, позволяющая заносить данные и изменять их. В интеллектуальных картах, которые иногда называют смарт-картами (от англ. smart - умный), кроме памяти, встроен ещё и микропроцессор. Он даёт возможность производить необходимые расчёты и делает пластиковые карты многофункциональными.

Технологии и материальные носители магнитной записи постоянно совершенствуются. В частности, наблюдается тенденция к увеличению плотности записи информации на магнитных дисках при уменьшении его размеров и снижении среднего времени доступа к информации.

На перфорированном документе информация записана путем перфорирования (пробивки) отверстий (перфораций) или вырезки соответствующих участков материального носителя.

В зависимости от назначения документы на перфоносителях подразделяют на три типа:

1.для управления автоматическими устройствами при выполнении различных операций в процессе изготовления и контроля спроектированных изделий;

2.для управления, обработки, преобразования информации при проектировании изделий на ЭВМ;

.для использования в процессе обработки и преобразования.

Запись информации на перфорированных документах может быть выполнена на непрерывной ленте или на карточках, представляющих собой как бы отрезки такой ленты, или на плоскости, на которой запись информации производится способом перфорирования. Поэтому по материальной конструкции носителя перфорированные документы делят на карточные (перфокарты, апертурные карты) и ленточные (перфоленты).

Перфокарты и перфоленты можно сгруппировать в виды по следующим признакам:

·каналу восприятия - перфокарты и перфоленты относятся к визуальным документам;

·материальной основе - искусственные, бумажные, реже пластмассовые (перфокарты) и целлулоидные или лавсановые (перфоленты);

·предназначенности для восприятия различают машиночитаемые (перфокарты машинной сортировки) и человекочитаемые (перфокарты ручной сортировки);

·расположению матрицы различают перфокарты с краевой и внутренней перфорацией;

·способу кодирования - вырезные с перфорацией, вырезаемой в процессе кодирования, и пробивные с перфорацией, получаемой при кодировании;

·способу обработки - перфокарты ручной и машинной сортировки;

по целевому назначению перфорированные документы могут быть разделены на учетные, справочные, библиографические, информационные, диагностические, учебные.

Перфорационная карта, перфокарта - это перфорированный носитель информации в виде прямоугольной карточки из тонкого картона, плотной бумаги или пластмассы, предназначенной для записи информации путем пробивки отверстий (перфораций) или вырезки ее соответствующих участков.

Перфокарты применяются, в основном, для ввода и вывода данных в ЭВМ, а также в качестве основного носителя записи в перфорационных вычислительных комплексах. Существует большое число видов перфокарт, различающихся формой, размерами, объемом хранимой информации, формой и расположением отверстий.

Перфорационная лента, перфолента - носитель информации в виде ленты (бумажной, целлулоидной или лавсановой), на которую данные наносятся определенной последовательностью кодовых комбинаций отверстий. Каждая кодовая комбинация кодирует один знак и размещается на ленте перпендикулярно направлению ее движения.

Перфоленту можно использовать:

·при передаче или приеме телеграфных депеш;

·при работе на вычислительных машинах и другой организующей технике (пишущей, суммирующей, бухгалтерской, и т.д.), на специальных дешифраторах или в выходном устройстве ЭВМ;

·как запись информации научного и технического характера и т.д. на различных машинах и приспособлениях.

В XIX веке, в связи с изобретением технотронных способов и средств документирования, широкое распространение получили многие принципиально новые носители информации. Исторически первыми из них были фотографические носители, появившиеся в первой половине XIX века. Фотоматериалы представляют собой гибкие пленки, пластинки, бумаги, ткани. По существу это - сложные полимерные системы, состоящие, как правило, из следующих слоев: подложка (основа) толщиной около 0,06 мм (в случае, если используется полиэтилентерефталат), на которую наносится подслой (толщиной примерно 1 мкм), а также светочувствительный эмульсионный слой - желатина с равномерно распределенными в ней микрокристаллами галогенида серебра (на цветных фотопленках до 0,05 мм, на фотобумагах - до 0,012 мм) и противоореольный слой.

Цветные фотографические носители имеют более сложное строение, поскольку содержат также сине-, желто-, зелено-, красночувствительные слои. Впервые трехслойные цветные фотоматериалы были разработаны и выпущены в 1935 г. американской фирмой «Истмен Кодак». В дальнейшем совершенствование многослойных цветных материалов продолжалось. Важное значение имели разработки 1950-х гг., явившиеся одним из качественных скачков в истории фотографии, предопределив быстрое развитие и широкое распространение цветной фотографии.

В последние годы появились новые научные идеи, создающие основу для значительного роста светочувствительности материалов и доведения ее до светочувствительности человеческого глаза.

Помимо светочувствительности, важнейшими характеристиками фотографических материалов, в частности фотопленок, являются также зернистость, контрастность, цветочувствительность.

До недавних пор в научных и репродуктивных целях использовались также фотопластинки, где рабочий слой наносился на прозрачную стеклянную основу, которая не деформируется при химико-фотографической обработке и обеспечивает точную передачу изображения в позитиве.

Кинопленка является фотографическим материалом на гибкой прозрачной подложке, имеющей с одной или обоих краев отверстия - перфорации. Исторически первые светочувствительные ленточные носители были на бумажной основе. Использовавшаяся на первых порах нитратцеллюлозная лента представляла собой очень горючий материал. Однако уже в 1897 г. немецким ученым Вебером была изготовлена пленка с негорючей основой из триацетата целлюлозы, получившая широкое распространение, в том числе в отечественной киноиндустрии. Впоследствии подложка стала изготовляться из полиэтилентерефлата и других эластичных полимерных материалов. В нашей стране первые образцы кинопленки были изготовлены в 1919 г., а с 1930 г. началось ее промышленное производство.

По сравнении. с фотопленкой кинопленка обычно состоит из большого количества слоев. На подложку наносится подслой, который служит для закрепления светочувствительного слоя (или нескольких слоев) на основе. Кроме того, кинопленка обычно имеет противоореольный, противоскручивающий, а также защитный слой.

Кинопленки бывают черно-белые и цветные. Цветные кинопленки также представляют собой многокомпонентные полимерные системы.

Кинопленки делятся на:

·негативные;

·позитивные (для контактного и проекционного печатания);

·обращаемые (могут использоваться для получения негативов и позитивов);

·контратипные (для копирования, например, для массового изготовления фильмокопий);

·гидротипные;

·фонограммные (для фотографической записи звука).

Черно-белая фотографическая пленка шириной 16 и 35 мм выступает в качестве наиболее распространенного носителя для изготовления микрофильмов. Микрофильм представляет собой микроформу на рулонной светочувствительной пленке с последовательным расположением кадров в один или два ряда. Основными типами микрофильмов являются микрофильмы рулонные и в отрезке. Микрофильмы в отрезке - это часть рулонной пленки длинной не менее 230 мм, на которой размещается до нескольких десятков кадров.

К числу документов на микроформах относятся также микрокарты, микрофиши и ультрамикрофиши, являющиеся фактически плоскими форматными микрофильмами:

·микрокарта - документ в виде микроформы на непрозрачном форматном материале, полученный копированием на фотобумагу или микроофсетной печатью;

·микрофиша - лист прозрачной фотопленки формата 105*148 мм с последовательным расположением кадров в несколько рядов;

·ультрамикрофиша - микрофиша, содержащая копии изображений предметов с уменьшением более чем в 90 раз. К примеру, емкость ультрамикрофиши размером 75*125 мм составляет 936 страниц книжного формата.

Несмотря на широкое распространение в последние десятилетия цифрового фото- и видеодокументирования, традиционные фотографические носители продолжают сохранять свою нишу на отечественном и зарубежном рынке материальных носителей информации, обеспечивая высокое качество при сравнительно низкой цене.

В массиве документов особое место занимают носители информации, содержащие одно или несколько микроизображений, получившие общее название микрографических документов или микроформ.

Микрографический документ выполняется на микроносителе микрокопии или оригинала документа. Этот класс документов составляют микрофильмы микрофиши и микрокарты.

Микрографические документы или микроформы производятся в компактной форме на фото -, кино -, магнитоленте или оптическом диске. Их отличительными особенностями являются малые физические размеры и вес, значительная информационная емкость, компактность хранения информации, необходимость специальной аппаратуры для ее считывания. Прогнозируемый срок службы микроформ - 500 и более лет.

Микрофильм - уменьшенная копия документа, полученная фотографическим способом. Он содержит одно или несколько текстовых и графических микроизображений, объединённых общностью содержания.

Микрофиша - плоская микроформа с расположением микроизображений в форме сетки. Микрофиша представляет собой отрезок фото -, диазо- или везикулярной плёнки стандартного формата, на которой в заданной последовательности располагается микроизображение. Читать микрофишу можно на читальном аппарате при помощи диапроектора.

Микрокарта - носитель информации на фотопленке, вставляемый в апертурную или кляссерную карту. Это документ изготовленный на непрозрачной основе (на отрезке фотографической или обычной бумаги, а также на металлической основе). Читают микрокарту на читальных аппаратах при помощи эпипроектора (т.е. в отраженном свете). В микрокарте можно использовать и лицевую, и оборотную стороны, разместив на одной стороне поисковый образ документа, библиографическое описание, аннотацию или реферат документа, а на другой - микроизображение всего документа.

Один из самых современных и перспективных носителей информации - твердотельная флэш-память, представляющая собой микросхему на кремниевом кристалле. Это особый вид энергонезависимой перезаписываемой полупроводниковой памяти. Название связано с огромной скоростью стирания микросхемы флэш-памяти.

Для хранения информации флэш-носители не требуют дополнительной энергии, которая необходима только для записи. Причем по сравнению с жесткими дисками и носителями CD - ROM для записи информации на флэш-носителях требуется в десятки раз меньше энергии, поскольку не нужно приводить в действие механические устройства, как раз и потребляющие большую часть энергии. Сохранение электрического заряда в ячейках флэш-памяти при отсутствии электрического питания обеспечивается с помощью так называемого плавающего затвора транзистора.

Носители на базе флэш-памяти могут хранит записанную информацию очень длительное время (от 20 до100 лет). Будучи упакованы в прочный жесткий пластиковый корпус, микросхемы флэш-памяти способны выдерживать значительные механические нагрузки (в 5-10 раз превышающие предельно допустимые для обычных жестких дисков). Надежность такого рода носителей обусловлена и тем, что они не содержат механически движущихся частей. В отличие от магнитных, оптических и магнитооптических носителей, здесь не требуется применение дисководов с использованием сложной прецизионной механики. Их отличает также бесшумная работа.

Кроме того, эти носители очень компактны. Уже первые карты CompactFlash (CF) имели размеры 43*36*3,3 мм. А вскоре появились один из самых маленьких устройств хранения информации - MultiMediaCard величиной всего лишь с почтовую марку и весом менее двух граммов.

Информацию на флэш-носителях можно изменять, т.е. перезаписывать. Помимо носителей с единственным циклом записи, существует флэш-память с количеством допустимых циклов записи / стирания до 10000, а также от 10000 до 1000000 циклов. Все эти типы принципиально не отличаются друг о друга. Отличия имеются лишь в архитектуре.

Несмотря на миниатюрные размеры, флэш-карты обладают большой емкостью памяти, составляющей многие сотни Мбайт. Они универсальны по своему применению, позволяя записывать и хранить любую цифровую информацию, в том числе музыкальную, видео- и фотографическую.

Флэш-память исторически происходит от полупроводникового ROM (Read Only Memory) (или ПЗУ - постоянно запоминающее устройство). Технология флэш-памяти появилась около 20 лет назад, а промышленное производство началось с середины 1990-х гг. В 1997 г. флэш-карты впервые стали применяться в цифровых фотокамерах. Практически сразу же они вошли в разряд основных носителей информации, широкоиспользуемых в самых разных цифровых мультимидийных устройствах - в портативных компьютерах, в принтерах, цифровых диктофонах, сотовых телефонах, электронных часах, записных книжках, телевизорах, кондиционерах, микроволновых печах, стиральных машинах, МР3 - плеерах, игровых приставках, в цифровых фото- и видеокамерах и т.д.

Флэш-карты являются одним из наиболее перспективных видов материальных носителей информации. Уже разработаны карты нового поколения - Secure Digital, обладающие криптографическими возможностями защиты информации и высокопрочным корпусом, существенно снижающим риск повреждения носителя статическим электричеством.

Выпущены кары емкостью 4 Гбайт. На них можно поместить около 4000 снимков высокого разрешения, или 1000 песен в формате МР3, или же полный DVD - фильм. Тем временем уже разработана флэш-карта емкостью 8 Гбайт.

Налажено производство так называемых неподвижных флэш-дисков (в действительности они имеют отличающуюся от диска форму) емкостью в сотни Мбайт, тоже представляющих собой мобильные устройства для хранения и транспортировки информации. К примеру, флэш-диск Canyon Flash Drive имеет размеры 63*15*8,1 мм, а вес всего лишь 8г. Эти носители легко подключаются к компьютеру.

Таким образом, совершенствование технологии флэш-памяти идет в направлении увеличения емкости, надежности, компактности, многофункциональности носителей, а также снижения их стоимости.

Объемное изображение информации в настоящее время записывается на голографических носителях. Для голографической съемки используются специальные пластинки или пленки. Они позволяют уплотнить информацию на материальном носителе. Так, на одной голограмме размером 101*126 мм можно разместить более тысячи микроголограмм диаметром всего лишь 102 мм, что соответствует нескольким тысячам страниц текста.

Качество голографического изображения зависит от разрешающей способности фотографического материала и определяется числом интерференционных линий, фиксируемых на 1 мм. Дело в том, что длина световой волны очень мала, следовательно, расстояние между интерференционными максимумами тоже невелико и достигает всего лишь 1 мкм. Отсюда, чем больше число интерференционных линий, тем выше качество изображения. Поэтому для фиксации информации в голографии используются мелкозернистые фотоэмульсии, обладающие высоким разрешением (1000 линий на 1 мм и более).

В настоящее время ведутся поиски беззернистых фотоматериалов, способных записывать непрерывное распределение яркости интерференционной картины, в отличие от дискретного, которое дат зернистые фотографические эмульсии, представляющие собой взвесь светочувствительных зерен.


. Влияние типа носителя информации на долговечность, стоимость и емкость документа


Передача информации во времени и пространстве непосредственно связана с характеристиками ее материального носителя. Не случайно проблема долговечности материальных носителей информации во все времена привлекала внимание участников процесса документирования. Уже в древности наблюдается стремление зафиксировать наиболее важную информацию на долговечных материалах, как камень, металл.

В процессе фиксирования информации наблюдалось стремление использовать качественные краски, стойкие чернила. Во многом благодаря этому до нас дошли многие важные текстовые исторические памятники. И, наоборот, использование недолговечных материальных носителей привели к безвозвратной утрате большинства документов далекого прошлого.

Однако, решая проблему долговечности, практически сразу же появилась проблема, заключавшаяся в том, что долговечные носители информации были, как правило, более дорогостоящими. Поэтому постоянно приходилось искать оптимальное соотношение между долговечностью материального носителя информации и его стоимостью. Эта проблема до сих пор остается весьма важной и актуальной.

Наиболее распространенный в настоящее время материальный носитель информации - бумага. Она обладает относительной дешевизной, доступностью. Однако в то же время бумага является очень недолговечным материалом, который может подвергаться различным воздействиям.

До середины 19 века бумага изготавливалась из тряпичного сырья, содержала длинноволокнистый материал с большим содержанием чистой клетчатки, обеспечивавшей ей высокую механическую прочность и долговечность. В середине 19 столетия, по мнению специалистов, наступил первый кризисный период в истории бумажного документа. Он был связан с переходом к изготовлению бумаги из древесины, с применением химических процессов обработки волокна, с использованием синтетических красителей, с широким распространением машинописи и средств копирования.

В результате долговечность бумажного документа сократилась с тысяч до двухсот - трехсот лет. Особенно недолговечны документы, изготовленные на бумаге низких по качеству видов и сортов.

Таким образом, обнаружилась определенная закономерность: усовершенствование технологии бумажного производства сопровождается снижением долговечности выпускаемых видов бумаги. Между прочим, ни один вид бумаги не смог превзойти долговечность папируса. Возраст папирусных свитков, хранящихся в настоящее время в библиотеках, музеях ряда стран, составляет несколько тысячелетий.

В конце 20 века с развитием компьютерных технологий и использованием принтеров для вывода информации на бумажный носитель вновь возникла проблема долговечности бумажных документов. Она обусловлена такими факторами как химическая стабильность краски, водостойкость, стойкость к физико-механическим воздействиям, вызывающим стирание, осыпание и другие дефекты.

Следования показали, что для длительного хранения наиболее пригодны документы, создаваемые с помощью матричных принтеров. Достаточно водостойкими и светостойкими являются распечатки лазерных принтеров, а также ксерокопированных аппаратов. Они аналогичны черной машинописи, которая являлась довольно надежным средством текстонанесения. Струйная принтерная печать, особенно цветная, дает водорасворимые и выцветающие тексты.

Не только принтерные струйные тексты являются недостаточно стойкими к воздействиям внешней среды. То же самое можно сказать и о многих современных рукописных текстах, которые лучше растворимы в воде и менее светостойки, чем традиционные.

В СССР даже была создана правительственная программа, предусматривавшая разработку и выпуск отечественных долговечных бумаг для документов, специальных стабильных средств письма и копирования, а также ограничение с помощью нормативов применения недолговечных материалов для создания документов. В соответствии с этой программой к 1990-м гг. были разработаны и стали выпускаться специальные долговечные бумаги для делопроизводства. Однако в дальнейшем эта программа не получила своего развития.

Проблема долговечности и экономической эффективности материальных носителей информации особенно остро встала с появлением технотронных (аудиовизуальных и машиночитаемых) документов, также подверженных старению и требующих особых условий хранения. Причем процесс старения таких документов является многосторонним и существенно отличается от старения традиционных носителей информации.

Во-первых, аудиовизуальные и машиночитаемые документы, равно как и документы на традиционных носителях, подвержены физическому старению, связанному со старением материального носителя. Так, старение фотоматериалов проявляется в изменении свойств их светочувствительности и контрастности при хранении. У цветных фотоматериалов происходит выцветание, проявляющееся в виде искажения цветов и снижения их насыщенности.

Уже с момента изготовления кино- и фотопленки начинается процесс их старения. Вместе с тем пленочный носитель является сравнительно долговечным материалом.

Срок службы граммофонных пластинок определяется их механическим износом, зависит от интенсивности использования, условий хранения.

Для магнитных носителей характерна высокая чувствительность к внешним электромагнитным воздействиям. Они также подвержены физическому старению, изнашиванию поверхности с нанесенным магнитным рабочим слоем. Ферромагнитный слой лент подвержен коррозии. Магнитная лента со временем растягивается, в результате чего искажается записанная на ней информация. Это связано с физическим износом ленты в результате ее соприкосновения с магнитной головкой в процессе считывания информации. Постепенно снижается намагниченность ленты, что приводит к сбоям. В результате гарантированный срок хранения информации на магнитной ленте составляет всего лишь 30 - 40 лет. То же самое происходит и с дискетами. Более долговечными являются жесткие диски, ресурс которых составляет примерно 28 лет. Однако накопители на жестких дисках представляют собой электромеханические устройства, а значит, чаще подвержены поломкам.

Наиболее надежными и долговечными на сегодняшний день являются оптические носители информации - СД-РОМ, СД-Р, ДВД. Срок их службы определяется не механическим износом, как у магнитных носителей, а химико-физической стабильностью среды, в которой они находятся. В отличие от магнитных дисков, оптические диски полностью независимы от внешних магнитных полей. Вместе с тем они также нуждаются в оптимальном режиме хранения. Оптическим дискам противопоказаны механические повреждения. Любая деформация делает невозможным считывание информации. При оптимальных условиях хранения продолжительность жизни компакт-дисков может составить 100 лет.

В отличие от традиционных текстовых и графических документов, аудиовизуальные и машиночитаемые документы подвержены техническому старению, связанному с уровнем развития оборудования для считывания информации. Быстрое развитие техники приводит к тому, что возникают проблемы для воспроизведения ранее записанной информации.

Внедрение в повседневность электронного документирования привело к тому, что техническое старение дополнилось так называемым логическим старением, которое связано с содержанием информации, программным обеспечением и стандартами сохранности информации.

Техническое и логическое старение приводит к тому, что значительная масса информации на электронных носителях безвозвратно утрачивается.

В настоящее время продолжается поиск информационно емких и одновременно достаточно стабильных и экономических носителей. На одной из научных конференций, состоявшейся в США, был продемонстрирован изготовленный из никеля «вечный диск» Rosetta. Он позволяет сохранять в аналоговом виде до 350000 страниц текста и рисунков в течение нескольких тысяч лет.

Активно ведутся работы по созданию компактных носителей информации с использованием нанотехнологий, работающих с атомами и молекулами. Плотность упаковки элементов, собранных из атомов, в тысячи раз больше, чем в современной микроэлектронике. В результате один компакт-диск, изготовленный по такой технологии, может заменить тысячи лазерных дисков.

Стремительное развитие новейших информационных технологий приводит, таким образом, к созданию все новых, более информационно емких, надежных и доступных по цене носителей информации.


Заключение


Цель курсового исследования достигнута путём реализации поставленных задач.

В результате проведённого исследования по теме «Современные материальные носители документированной документации» можно сделать ряд выводов:

Глобальная информатизация общества, широкое распространение новых информационных и коммуникационных технологий, постепенное внедрение рыночных механизмов и современного менеджмента привели к усилению роли информации в социально-экономических процессах и осознанию ее как важнейшего стратегического ресурса.

Согласно российскому законодательству, в информационные ресурсы включаются документированная информация и информационные технологии, т.е. предмет и средства информационной деятельности.

Документирование информации - обязательное условие для ее включения в информационные ресурсы - осуществляется в порядке, устанавливаемом органами государственной власти, ответственными за организацию делопроизводства, стандартизацию документов и их массивов, безопасность Российской Федерации.

При помощи документирования информация приобретает необходимые свойства и в виде документов выполняет свою основную роль в процессах управления, передавая управленческие воздействия от объекта субъекту управления и сигнализируя об обратной реакции.

В результате документирования информация закрепляется (фиксируется) на носителе, приобретает юридическую силу, возможность идентификации, доказательства ее подлинности. Таким образом, основной формой организации информации в управлении является документ.

Существует три основных сущностных подхода к формулированию понятия документа: как материального объекта; как носителя информации; как документированной информации. В течение, длительного времени главенство в термине принадлежало носителю.

Современное понимание документа выводит на передний план информационную составляющую документа и ее правовое обеспечение, позволяющее осуществить идентификацию документа в процессе его функционирования. Включение в понимание документа правовой составляющей позволяет реализовать концепцию управления документацией на всех стадиях ее жизненного цикла.

Для управленческого документа существенным является носитель информации. Носители документной информации изменяются в ходе технического прогресса. С развитием новых информационных технологий появляются так называемые электронные документы, носители информации которых принципиально отличаются от «бумажных».

Человек способен воспринимать электронный документ только с помощью специальных технологических процедур и программных средств. Электронные документы имеют физическую и логическую структуру, не совпадающую с прежними представлениями о документе как жесткой, неизменяемой конструкции информации и ее носителя.

Под материальной составляющей документа имеют в виду:

·материальную основу документа;

·форму носителя информации;

·способ документирования или записи информации.

Носители информации самым тесным образом связаны не только со способами и средствами документирования, но и с развитием технической мысли. Отсюда - непрерывная эволюция типов и видов материальных носителей.

Развитие материальных носителей документированной информации в целом идёт по пути непрерывного поиска объектов с высокой долговечностью, большой информационной ёмкостью при минимальных физических размерах носителя.

Список источников

информация носитель материальный электронный

1.Бардаев Э.А. Документоведение: учебник для студентов высших учебных заведений / Э.А. Бардаев, В.Д. Кравченко. - М.: Издательский центр «Академия», 2008. - 304 с.

2.Ларьков, Н.С. Документоведение: учебное пособие / Н.С. Ларьков. - М.: АСТ: Восток - Запад, 2006. - 427 с.

3.Стенюков М.В. Документоведение и делопроизводство (конспект лекций). - М.: А - Приор, 2007. - 176 с. «Перечисление современных носителей информации».

.Гутгарц Р.Д. Документирование управленческой деятельности: Курс лекций. - М.: ИНФРА - М, 2001. - 185 с. - (Серия «Высшее образование»).

.Басаков М.И. Делопроизводство; конспект лекций / М.И. Басаков. - Изд. 7-е, испр. и доп. - Ростов н/Д: Феникс, 2009. - 192 с.

.Румынина Л.А. Документационное обеспечение управления: для студентов учреждений среднего проффесионального образования / Л.А. Румынина. - 6. - е изд., стер - М.: Издательский центр «Академия», 2008. - 224 с.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Носитель информации -- предмет, используемый человеком для длительного хранения информации.

Оптические диски

Носители информации в форме диска, информация с которых считывается при помощи лазера. Информация хранится в виде питов(pit - яма) и лендов(land - земля) на слое поликарбоната. Если свет сфокусировался между питами (на ленде), то фотодиод регистрирует максимальный сигнал. В случае, если свет попадает на пит, фотодиод регистрирует ме́ньшую интенсивность света.

Первое поколение

Компакт-диск(CD) - разработан компаниями Sony и Phillips в 1979 году, используется преимущественно для записи аудио-файлов. Имеют объём от 650 Мб до 900 Мб. Разделяются на CD-R(Compact Disc Recordable) для однократной записи и на CD-RW(Compact Disc ReWritable)для многократной записи. Весьма распространены до сих пор.

Второе поколение

Цифровой многоцелевой диск(DVD) - был анонсирован в 1995 году. Благодаря более плотной структуре рабочей поверхности и возможности нанесения её на обе стороны диска, он значительно превосходит компакт-диски в объёме от (1,46 Гб до 17.08 Гб). Также делятся на DVD-R и DVD-RW, DVD+R и DVD+RW, которые более совершенны, чем предыдущие два, и DVD-RAM, допускающий значительно большее количество перезаписей, чем DVD+RW. Наиболее распространённые оптические диски на данный момент.

Цифровой Многослойный Диск(DMD) - оптический диск, разработанный компанией D Data Inc. Диск основан на трехмерной оптической технологии хранения данных, то есть лазер считывает с нескольких рабочих поверхностей одновременно. DMD могут хранить от 22 до 32 Гб двоичной информации. DMD покрыты запатентованными химическими составами, которые реагируют, когда красный лазер освещает особый слой. В этот момент химическая реакция производит сигнал, который в последующем будет считан с диска. Благодаря этому диски могут потенциально вмещать до 100 Гб данных.

Флуоресцентный многоуровневый диск(FMD) - формат оптического носителя, разработанный компанией «Constellation 3D», использующий флуоресценцию вместо отражения для хранения данных, что позволяет работать, соответствуя принципам объёмной оптической памяти и иметь до 100 слоёв. Они позволяют вместить объём до 1 Тб при размерах обычного компакт-диска. Питы на диске заполнены флуоресцентным материалом. Когда когерентный свет из лазера фокусируется на них, они вспыхивают, излучая некогерентные световые волны разных длин. Пока диск чист, свет способен проходить через множество слоёв беспрепятственно. Чистые диски имеют возможность отфильтровывать свет лазера (базируясь на длинах волн и когерентности), достигая при этом более высокого коэффициента отношения сигнал/шум, чем диски, основанные на отражении. Это позволяет иметь множество слоёв.

Третье поколение

Blu-ray Disc(BD) - формат оптического диска, используемый для записи с повышенной плотностью хранения цифровых данных. Современный вариант этого диска был представлен в 2006 году. Своё название(blue ray - синий луч) получил по технологии записи и чтения с помощью коротковолнового синего лазера, что и позволило уплотнить данные на диске. Может вмещать от 8 до 50 Гб.

DVD высокой ёмкости(HD DVD) - аналог предыдущего формата дисков с ёмкостью до 30 Гб.Не поддерживаются с 2008 года, чтобы избежать войны форматов.

Многоцелевые многоуровневые диски высокой ёмкости(HDVMD) - формат цифровых носителей на оптических дисках, предназначенный для хранения видео высокой чёткости и другого высококачественных мультимедийных данных. На одном слое HD VMD-диска помещается до 5 ГБ данных, но за счёт того, что диски являются многослойными (до 20 слоёв) их ёмкость достигает 100 ГБ. В отличие от предыдущих двух форматов использует красный лазер, что позволяет читать их дисководам, поддерживающих CD и DVD диски.

Четвёртое поколение

Голографический многоцелевой диск(HVD) - разрабатываемый перспективный формат оптических дисков, который предполагает значительно увеличить объём хранимых на диске данных по сравнению с Blu-Ray и HD DVD. Он использует технологию, известную как голография, которая использует два лазера: один - красный, а второй - зелёный, сведённые в один параллельный луч. Зелёный лазер читает данные, закодированные в виде сетки с голографического слоя близкого к поверхности диска, в то время как красный лазер используется для чтения вспомогательных сигналов с обычного компакт-дискового слоя в глубине диска. Предполагаемая ёмкость - до 4 Тб.

Жёсткие диски

Накопитель на жёстких магнитных дисках - запоминающее устройство, основной накопитель в большинстве компьютеров. Принцип действия основан на изменении векторов намагниченности доменов(небольшого участка диска)магнитного диска под действием переменного тока в катушке на конце считывающей головки. Распространены благодаря очень высокой ёмкости и скорости работы. Многие жёсткие диски издают шум. Бытовые диски обычно хранят информацию в объёме до 1 Тб. Бывают также и внешние жёсткие диски, присоединяемые к компьютеру через USB-порт, они не обеспечивают такой же скорости, как и внутренние, но предоставляют ту же большую ёмкость. Помимо это разрабатываются гибридные жёсткие диски с элементами флэш-памяти.

Носители, использующие технологию флеш-памяти

Флеш-память - разновидность полупроводниковой технологии электрически перепрограммируемой памяти. Принцип работы полупроводниковой технологии флеш-памяти основан на изменении и регистрации электрического заряда в изолированной области («кармане») полупроводниковой структуры. Достоинствами таких носителей являются компактность, дешевизна, механическая прочность, большой объём, скорость работы и низкое энергопотребление. Серьёзным недостатком данной технологии является ограниченный срок эксплуатации носителей.

USB-флэш-накопитель - запоминающее устройство, изобретённое в 2000 году. Очень популярное, благодаря удобству пользования и универсальности. Может хранить информацию без электричества до 10 лет.

Карта памяти - запоминающее устройство разных разновидностей, используемые под определённые устройство, таких как мобильные телефоны, КПК, авторегистраторы. Наиболее распространён стандарт microSD.

Введение стр. 3

Современные материальные носители документированной информации, их классификация и характеристика

I. Современные материальные носители стр. 5

II. Классификация современных материальных носителей стр. 6

III. Характеристика современных материальных носителей

1. Магнитные носители стр. 9

2. Пластиковые карты стр. 12

3. Оптические носители стр. 13

4. Носители на базе флэш-памяти стр. 17

5. Носители объёмного изображения стр. 19

Заключение стр. 23

Используемая литература стр. 26

Введение

Понятие документ является центральным, фундаментальным в понятийной системе документоведения. Это понятие широко используется во всех сферах общественной деятельности. Почти в каждой отрасли знания имеется одна или несколько версий для его понимания в соответствии со спецификой тех объектов, которым придаётся статус документа.

Понятие документ выступает как родовое для видовых: опубликованный, не опубликованный, кино-, фоно-, фотодокумент и т.п. с этой точки зрения разновидностью документа являются: буклет, чертёж, карта, фильм, магнитная лента, магнитный и оптический диск.

Вспомним ещё раз определение документа: информация, закреплённая на материальном носителе в стабильной знаковой форме созданным человеком способом для её передачи в пространстве и времени. Из определения следует, что документ не существует в готовом виде, его нужно создать, т.е. зафиксировать в стабильной форме. Процесс закрепления (фиксации) информации на материальном носителе называется документированием.

В процессе документирования происходит преобразование социальной информации из одной знаковой формы в другую, т.е. кодирование информации, без которого невозможна реализация основных функций документа – функций закрепления и передачи информации в пространстве и времени.

Информатизация общества, бурное развитие микрографии, компьютерной техники и проникновение её во все сферы деятельности определили появление документов на новейших носителях информации. Наличие обобщающего понятия документ не исключает возможности существования более частных, узкоспециализированных его трактовок применительно к разным сферам общественной деятельности и научным дисциплинам: источниковедению, делопроизводству, дипломатике, информатике, юридической науке.

Среди этих новейших носителей информации выделяется группа «Современных носителей документированной информации», которые используются в настоящее время, приходя на смену старым носителям всё большей популярностью. Например, кажется не так давно очень распространённый носитель информации – гибкий магнитный диск или дискета практически не используется, на смену ему пришли оптические диски и носители на базе флэш-памяти, тоже явление происходит и в аудио- и видеотехнике на смену аудио- и видеокассет пришли оптические диски.

Данная тема «Современные материальные носители информации, их классификация и характеристика» касается и документно-коммуникационной деятельности, так как рассматривает средства, которые упрощают обмен информацией.

Я считаю, что выбранная мной тема курсовой работы актуальна в настоящее время, так как знание и умение пользоваться современными носителями информации позволяет идти в ногу со временем и ускорять процесс создания и передачи информации в пространстве и времени, а также улучшить условия хранения документированной информации.

Современные материальные носители документированной информации, их классификация и характеристика

I. Современные материальные носители

Информатизация общества, бурное развитие компьютерной техники и проникновение её во все сферы человеческой деятельности определили появление документов на современных, нетрадиционных, т.е. не бумажных носителях информации.

Понятие «современный» и «нетрадиционный» документ во многом условны и служат для названия группы документов, которые в отличие от традиционных, т.е. бумажных, как правило, требуют для воспроизведения информации современных технических средств. Все это связано с появлением электронно-вычислительных машин – компьютеров, представляющих собой комплексы технических средств, предназначенных для автоматического преобразования информации, используются для записи и воспроизведения как текстовой, так и графической, и аудио-, и видеоинформации.

Появление современных носителей связано и с тем, что за полвека своего существования сменилось уже пять поколений компьютеров, причём от поколения к поколению на порядок и более возрастали их производительность и ёмкость запоминающих устройств. А также появлялись новые, более совершенные периферийные устройства – принтеры, сканеры, копиры, а в настоящее время всё чаще используются многофункциональные устройства (МФУ), которые облегчают работу офисных служащих, позволяющие получать твёрдую копию документа не только из памяти компьютера, но с современного носителя.

С моей точки зрения к современным носителя документированной информации относятся: магнитные карты, магнитные жёсткие диски, оптические диски, голограммы, носители на базе флэш-памяти. Может быть это не правильное суждение, но данные носители активно используются в настоящее время. Они пришли на смену хорошо всем известным аудио-, видеокассетам, микроформам, гибким дискам или дискетам. Их можно назвать устаревшими. Тоже самое произойдёт и с современными носителями информации, потому что современными они являются в данный момент. Лет через десять на смену современным носителям придут ещё более современные носители, так как человечество не стоит на одном месте, а прогрессирует и развивается бурными темпами. И через лет десять рассматриваемые в данной работе современные материальные носители документированной информации назовут устаревшими.

II . Классификация современных материальных носителей

Документ представляет собой двуединство информации и материального носителя. Поэтому важными признаками («сильными отличиями»), которые могут быть положены в основу классификации, являются особенности строения, формы материала, на котором фиксируется информация. В частности, по этому критерию всё многообразие документов содержащихся на современных материальных носителях можно представить в виде класса:

· документы на искусственной материальной основе (на полимерных материалах).

В свою очередь, документы на искусственной материальной основе можно отнести к многослойным, в которых имеется как минимум два слоя – специальный рабочий слой и подложка (магнитные носители, оптические диски и др.). При этом основа подложка может быть всякой разной – бумажной, металлической, стеклянной, керамической, деревянной, тканью, плёночной или пластиночной пластмассовой. На основу наносится от одного до нескольких (иногда до 6-8) слоёв. В результате материальный носитель предстаёт порой в виде сложной полимерной системы.

Существуют также энергетические носители.

По форме материального носителя информации документы могут быть:

· карточными (пластиковые карты);

· дисковыми (диск, компакт-диск, CD-ROM, видеодиск). Местом размещения информации являются концентрические дорожки – оптические диски.

В зависимости от возможности транспортировки материальных носителей документы можно разделить на:

· стационарные (жёсткий магнитный диск в компьютере);

· портативные (оптические диски, носители на базе флэш-памяти).

В зависимости от способа документирования документы на современных носителях информации можно разделить на:

· магнитные (магнитные жёсткие диски, магнитные карты);

· оптические (лазерные) – документы, содержащие информацию, записанную с помощью лазерно-оптической головки (оптические, лазерные диски);

· голографические – созданные с использованием лазерного луча и фоторегистрирующего слоя материального носителя (голограммы).

· документы на машинных носителях – электронные документы, созданные с использованием носителей и способов записи, обеспечивающих обработку его информации электронно-вычислительной машиной .

Документы на современных материальных носителях информации, как правило, не поддаются непосредственному восприятию, считыванию. Информация хранится на машинных носителях, а часть документов создаётся и используется непосредственно в машиночитаемой форме.

По предназначенности для восприятия рассматриваемую документы относятся к машиночитаемым. Это документы, предназначенные для автоматического воспроизведения находящейся в них информации. Содержание таких документов полностью или частично выражено знаками (матричное расположение знаков, цифр и т.п.), приспособленным для автоматического считывания. Информация записывается на магнитных лентах, картах, дисках и подобных носителях.

Документы на современных носителя информации относятся к классу технически-кодированных, содержащих запись, доступную для воспроизведения только с помощью технических средств, в том числе звуковоспроизводящей, видеовоспроизводящей аппаратуры или компьютера.

По характеру связи документов с технологическими процессами в автоматизированных системах различают:

· машинно-ориентированный документ, предназначенный для записи считывания части содержащейся в нём информации средствами вычислительной техники (заполненные специальные формы бланков, анкет и т. п.);

· машиночитаемый документ, пригодный для автоматического считывания содержащейся в ней информации с помощью сканера (текстовые, графические);

· документ на машиночитаемом носителе, созданный средствами вычислительной техники, записанный на машиночитаемый носитель: жёсткий магнитный диск, оптический диск, носитель на базе флэш-памяти – и оформленный в установленном порядке;

· документ-машинограмма (распечатка), созданный на бумажном носителе с помощью средств вычислительной техники и оформленный в установленном порядке;

· документ на экране дисплея, созданный средствами вычислительной техники, отражённый на экране дисплея (монитора) и оформленный в установленном порядке;

· электронный документ, содержащий совокупность информации в памяти вычислительной машины, предназначенный для восприятия человеком с помощью соответствующих программных и аппаратных средств.

III . Характеристика современных материальных носителей

1. Магнитные носители

Из всех носителей магнитных документов хочу выделить магнитный диск – носитель информации в виде диска с ферромагнитным покрытием для записи. Магнитные диски делятся на жёсткие (винчестеры) и гибкие (дискеты).

Из этой группы в своей работе я буду рассматривать только винчестеры, так как дискеты, их я называю устаревшими носителями информации, практически вытеснены оптическими дисками и носителями на базе флэш-памяти.

Жёсткие диски

Жёсткие магнитные диски, называемые винчестерами, предназначены для постоянного хранения информации, используемой при работе с персональным компьютером и устанавливаются внутри него.

Винчестеры значительно превосходят гибкие диски. Они имеют лучшие характеристики ёмкости, надёжности и скорости доступа к информации. Поэтому их применение обеспечивает скоростные характеристики диалога пользователя и реализуемых программ, расширяет системные возможности по использованию баз данных, организации многозадачного режима работы, обеспечивает эффективную поддержку механизма виртуальной памяти. Однако стоимость винчестеров намного выше стоимости гибких дисков.

Винчестер смонтирован на оси-шпинделе, приводимой в движение специальным двигателем. Он содержит от одного до десяти дисков (platters). Скорость вращения двигателя для обычных моделей может составлять 3600, 4500, 5400, 7200, 10000 или даже 12000 об/мин. Сами диски представляют собой обработанные с высокой точностью керамические или алюминиевые пластины, на которые нанесен магнитный слой.

Важнейшей частью винчестера являются головки чтения и записи (read-write head). Как правило, они находятся на специальном позиционере (head actuator). Для перемещения позиционера используются преимущественно линейные двигатели (типа voice coil - «звуковая катушка»). В винчестерах применяются несколько типов головок: монолитные, композитные, тонкопленочные, магниторезистивные (MR, Magneto-Resistive), а также головки с усиленным магниторезистивным эффектом (GMR, Giant Magneto-Resistive). Магниторезистивная головка, разработанная IBM в начале 1990-х годов, представляет собой комбинацию из двух головок: тонкопленочной для записи и магниторезистивной для чтения. Подобные головки позволяют почти в полтора раза увеличить плотность записи. Еще больше позволяют повысить плотность записи GMR-головки.

Внутри любого винчестера обязательно находится электронная плата, которая расшифровывает команды контроллера жесткого диска, стабилизирует скорость вращения двигателя, генерирует сигналы для головок записи и усиливает их от головок чтения.

Различают два вида жёстких магнитных дисков.

Жёсткий диск (hard disk) – встроенный накопитель (дисковод) на жёстком магнитном диске пакет закреплённых один над другим магнитных дисков, извлечение которых в процессе эксплуатации электронных вычислительных машинах является невозможным.

Съёмный жёсткий диск (removable hard disk) – пакет магнитных дисков, заключённых в защитную оболочку, которые в процессе эксплуатации электронных вычислительных машинах могут выниматься из дисковода на сменном жёстком диске и заменяться другим. Использование этих дисков обеспечивает практически неограниченный объём внешней памяти ЭВМ .

В ходе выполнения процедуры так называемого низкоуровневого форматирования (low-level formatting) на жесткий диск записывается информация, которая определяет разметку винчестера на цилиндры и секторы. Структура формата включает в себя различную служебную информацию: байты синхронизации, идентификационные заголовки, байты контроля четности. В современных винчестерах такая информация записывается однократно при изготовлении винчестера. Повреждение этой информации при самостоятельном низкоуровневом форматировании чревато полной неработоспособностью диска и необходимостью восстановления этой информации в заводских условиях.

Емкость винчестера измеряется в мегабайтах. К концу 1990-х годов средняя емкость жестких дисков для настольных систем достигла 15 гигабайт, а в серверах и рабочих станциях с интерфейсом SCSI применяются винчестеры емкостью свыше 50 гигабайт. В большинстве современных персональных компьютеров применяются жесткие диски емкостью 40 гигабайт.

Одной из основных характеристик жесткого диска является среднее время, в течение которого винчестер находит нужную информацию. Это время обычно представляет собой сумму времени, необходимого для позиционирования головок на нужную дорожку и ожидания требуемого сектора. Современные винчестеры обеспечивают доступ к информации за 8-10 мс.

Другой характеристикой винчестера является скорость чтения и записи, но она зависит не только от самого диска, но и его контроллера, шины, быстродействия процессора. У стандартных современных жестких дисков эта скорость составляет 15-17 Мбайт/с.

2. Пластиковые карты

Пластиковые карты представляют собой устройство для магнитного способа хранения информации и управления данными.

Пластиковые карты состоят из трёх слоёв6 полиэфирной основы, на которую наносится тонкий рабочий слой, и защитного слоя. В качестве основы обычно используется поливинилхлорид, который легко обрабатывается, устойчив к температурным, химическим и механическим воздействиям. Однако в целом ряде случаев основой для магнитных карт служит псевдопластик – плотная бумага или картон с двусторонним ламинированием.

Рабочий слой (ферромагнитный порошок) наносится на пластик методом горячего тиснения в виде отдельных узких полосок. Магнитные полоски по своим физическим свойствам и сфере применения делятся на два типа: высокоэрцетивные и низкоэрцетивные . Высокоэрцетивные полоски имеют чёрный цвет. Они устойчивы к воздействию магнитных полей. Для их записи нужна более высокая энергия. Используются в качестве кредитных карт, водительских удостоверений, т. е. в тех случаях, когда требуется повышенная износостойкость и защищённость. Низкоэрцетивные магнитные полосы имеют коричневый цвет. Они менее защищены, но зато проще и быстрее записываются. Используются на картах ограниченного срока действия, в частности, для проезда в метрополитене.

Следует заметить, что, кроме магнитного, существуют и другие способы записи информации на пластиковую карту: графическая запись, эмбоссирование (механическое выдавливание), штрих-кодирование, лазерная запись. В частности, в последнее время в пластиковых картах вместо магнитных полосок всё более широко стали применяться электронные чипы. Такие карты, в отличие от простых магнитных, стали называть интеллектуальными или смарт-картами (от англ. smart – умный). Встроенный в них микропроцессор позволяет хранить значительный объём информации, даёт возможность производить необходимые расчёты в системе банковских и торговых платежей, превращая таким образом, пластиковые карты в многофункциональные носители информации.

По способу доступа к микропроцессору (интерфейсу) смарт-карты могут быть:

· с контактным интерфейсом (т. е. при совершении операции карта вставляется в электронный терминал;

· с дуальным интерфейсом (могут действовать как контактно, так и бесконтактно, т. е. обмен данными между картой и внешними устройствами может осуществляться через радиоканал).

Защитный слой магнитных пластиковых карт состоит из прозрачной полиэфирной плёнки. Он призван предохранять рабочий слой от износа. Иногда используются покрытия, предохраняющие от подделки и копирования. Защитный слой обеспечивает до двух десятков тысяч циклов записи и чтения.

Размеры пластиковых карт стандартизированы. В соответствии с международным стандартом ISO-7810 их длина равна 85,595 мм, ширина – 53,975 мм, толщина – 3,18 мм.

Сфера применения пластиковых и псевдопластиковых магнитных карт достаточно обширна. Помимо банковских систем, они используются в качестве компактного носителя информации, идентификатора автоматизированных систем учёта и контроля, удостоверения, пропуска, телефонной и Интернет карты, билета для проезда в транспорте.

3. Оптические носители

Непрерывный научно-технический поиск материальных носителей документированной информации с высокой долговечностью, большой информационной ёмкостью при минимальных физических размерах носителя обусловил появление оптических дисков, получивших в последнее время широкое распространение. Они представляют собой пластиковые или алюминиевые диски, предназначенные для записи или воспроизведения звука, изображения, буквенно-цифровой и другой информации при помощи лазерного луча.

Стандартные компакт-диски выпускаются диаметром 120 мм (4,75 дюйма), толщиной – 1,2 мм (0,05 дюйма), с диаметром центрального отверстия 15 мм (0,6 дюйма). Они имеют жёсткую очень прочную прозрачную, обычно пластиковую (поликарбонатную) основу толщиной 1мм. Однако возможно использование в качестве основы и других материалов, например, оптический носитель с основой из картона.

Рабочий слой оптических дисков на первых порах изготавливался в виде тончайших плёнок легкоплавких материалов (теллур) или сплавов (теллур-селен, теллур-углерод, теллур-свинец и др.), а в последствии – главным образом на основе органических красителей. Информация на CD фиксируется на рабочем слое в виде спиральной дорожки с помощью лазерного луча, выполняющего роль преобразователя сигналов. Дорожка идёт от центра диска к его периферии.

При вращении диска лазерный луч следует вдоль дорожки, ширина которой близка к 1 мкм, а расстояние между двумя соседними дорожками – до 1,6 мкм. Формируемые на диске лазерным лучом метки (питы) имеют глубину около пяти миллиардных долей дюйма, а площадь 1-3 мкм 2 . внутренний диаметр записи составляет 50 мм, наружный – 116 мм. Общая длина всей спиральной дорожки на диске составляет около 5 км. На каждый мм радиуса диска приходится 625 дорожек. Всего на диске располагается 20 тыс. витков спиральной дорожки.

Для хорошего отражения лазерного луча используется так называемое «зеркальное» покрытие дисков алюминием (в обычных дисках) или серебром (в записываемых и перезаписываемых). На металлическое покрытие наносится тонкий защитный слой из поликарбоната или специального лака, обладающей высокой механической прочностью, поверх которого размещаются рисунки и надписи. Нужно иметь в виду, что именно эта, окрашенная сторона диска является более уязвимой, нежели противоположная, с которой осуществляется считывание информации через всю толщину диска.

Технология изготовления оптических дисков является достаточно сложной. Вначале создаётся стеклянная матрица – основа диска. С этой целью пластик (поликарбонат) разогревается до 350 градусов, затем следует его «впрыскивание в форму, мгновенное охлаждение и автоматическая подача на следующую технологическую операцию. На стеклянный диск-оригинал наносится фоторегистрирующий слой. В этом слое лазерной системой записи формируется система Питов, т.е. создаётся первичный «мастер-диск». Затем по «мастер-диску» путём литья под давлением осуществляется массовое тиражирование, создание дисков-копий.

Информационная ёмкость дисков обычно составляет менее 650 Мбайт. На одном диске можно записать несколько сот тысяч страниц машинописного текста. Для сравнения: весь книжный фонд Российской государственной библиотеки, в случае его перевода на компакт-диски, можно уместить в обычной трёхкомнатной квартире. Между тем уже разработаны оптические диски и с гораздо большей ёмкостью – свыше 1 Гбайт.

Поскольку запись и воспроизведение информации на оптических дисках являются бесконтактными, постольку практически исключается возможность механического повреждения таких дисков.

Он также как и магнитный документ относится к современным носителя информации, основанным на оптических способах записи, считывания и воспроизведения. К оптическим документам относятся оптические диски и видеодиски: компакт-диски, CD-ROM, DVD-диск.

Схема конструкции оптического видеодиска: 1 - наружный слой из прозрачной пластмассы; 2 - металлизированная отражающая дорожка записи; 3 - твердая непрозрачная пластиковая основа.

На оптический диск информация записывается и считывается с помощью сфокусированного лазерного луча.

В зависимости от возможности использования для записи и считывания оптические диски делят на два вида:

1. WORM (Write Once Read Many) – накопители, предназначенные для записи информации и её хранения;

2. CD-ROM (Compact Disk Read Only Memory) - накопители, предназначенные для чтения информации.

Оптические диски можно разделить на типы:

· Аудио-компакт-диск - это диск с постоянной (нестираемой) звуковой информацией, записанной в двоичном коде;

· CD-ROM – диск с постоянной памятью, предназначенный для хранения и чтения значительных объёмов информации. Он содержит компьютерную информацию, которая считывается дисководом, подключённым к ПЭВМ;

· Видео-компакт-диск – диск, на котором в цифровой форме записывается текстовая, изобразительная и звуковая информация, а также программы ЭВМ;

· DVD-диск – разновидность нового поколения оптических дисков, на котором в цифровой форме записывается текстовая, видео и звуковая информация, а также компьютерные данные;

· Магнитооптический диск – диски состоящие из разных комбинаций гибкого магнитного диска, винчестера и оптического диска.

4. Носители на базе флэш-памяти

Один из самых современных и перспективных носителей документированной информации – твёрдотельная флэш-память, представляющая собой микросхему на кремниевом кристалле. Этот особый вид энергонезависимой перезаписываемой полупроводниковой памяти. Название связано с огромной скоростью стирания микросхемы флэш-памяти.

Для хранения информации флэш-носители не требуют дополнительной энергии, которая необходима только для записи. Причём по сравнению с жёсткими дисками и носителями CD-ROM для записи информации на флэш-носителях требуется в десятки раз меньше энергии, поскольку не нужно приводить в действие механические устройства, как раз и потребляющие большую часть энергии. Сохранение электрического заряда в ячейках флэш-памяти при отсутствии электрического питания обеспечивается с помощью так называемого плавающего затвора транзистора.

Носители на базе флэш-памяти могут хранить записанную информацию очень длительное время (от 20 до 100 лет). Будучи упакованы в прочный жёсткий пластиковый корпус, микросхемы флэш-памяти способны выдерживать значительные механические нагрузки (в 5-10 раз превышающие предельно допустимые для обычных жёстких дисков). Надёжность такого рода носителей обусловлена и тем, что они не содержат механически движущихся частей. В отличие от магнитных, оптических и магнитооптических носителей, здесь не требуется применение дисководов с использованием сложной прецизионной механики. Их отличает также бесшумная работа.

Кроме того, эти носители очень компактны.

Информацию на флэш-носителях можно изменять, т.е. перезаписывать. Помимо носителей с единственным циклом записи, существует флэш-память с количеством допустимых циклов записи/стирания до 10000, а также от 10000 до 100000 циклов. Все эти типы принципиально не отличаются друг от друга.

Несмотря на миниатюрные размеры, флэш-карты обладают большой ёмкостью памяти, составляющей многие сотни Мбайт. Они универсальны по своему применению, позволяя записывать и хранить любую цифровую информацию, в том числе музыкальную, видео- и фотографическую.

Флэш-память вошла в разряд основных носителей информации, широко используемых в разных цифровых мультимедийных устройствах – в портативных компьютерах, в принтерах, цифровых диктофонах, сотовых телефонах, электронных часах, записных книжках, телевизорах, кондиционерах, МРЗ-плеерах, в цифровых фото- и видеокамерах.

Флэш-карты являются одним из наиболее перспективных видов материальных носителей документированной информации. Уже разработаны карты нового поколения – Secure Digital, обладающие криптографическими возможностями защиты информации и высокопрочным корпусом, существенно снижающим риск повреждения носителя статистическим электричеством.

Выпущены карты ёмкостью 4 Гбайт. На них можно поместить около 4000 снимков высокого разрешения, или 1000 песен в формате МРЗ, или же полный DVD-фильм. Тем временем набирает свои обороты использования флэш-карта ёмкостью 8 Гбайт.

Налажено производство так называемых неподвижных флэш-дисков ёмкостью в сотни Мбайт, тоже представляющих собой устройство для хранения и транспортировки информации.

Таким образом, совершенствование технологии флэш-памяти идёт в направлении увеличения ёмкости, надёжности, компактности, многофункциональности носителей, а также снижения их стоимости.

5. Носители объёмного изображения

Голограмма современный носитель объёмного изображения.

Представляет собой документ, содержащий изображение, запись и воспроизведение которого производится оптическим способом с использованием лазерного луча без использования линз.

Голограмма создаётся с помощью голографии – метода точной записи, воспроизведения и преобразования волновых полей. Он основан на интерференции волн – явлении, наблюдаемом при сложении поперечных волн (световых, звуковых и др.) либо при усилении волн в одних точках документа и ослаблении в других в зависимости от разности фаз интерферирующих волн. На фотопластинку одновременно с «сигнальной» волной, рассеянной объектом, направляют «опорную» волну от того же источника света. Возникающая при интерференции этих волн картина, содержащая информацию об объекте, фиксируется на светочувствительной поверхности (голограмме). При облучении голограммы или её участка опорной волной можно увидеть объёмное изображение объекта.

Особенностью голографии является получение зрительного образа предмета, который обладает всеми признаками оригинала. При этом достигается полная иллюзия присутствия предмета.

На голограмме запись и воспроизведение информации производится при помощи лазера. Качество изображения зависит от монохроматичности излучения лазера и разрешающей способности фотоматериалов, используемых при получении голограмм. Если спектр излучения лазера широкий, то результирующая интерференционная картина будет не чёткой и размытой. Поэтому при изготовлении голограмм применяют лазеры с очень узкой спектральной линией излучения. На качество голографического изображения влияют условия съёмки, разрешающая способность фотоматериалов. Внешне голограмма напоминает засвеченный фотографический негатив, на которой нет никаких признаков «фотографируемого» предмета. Однако достаточно осветить голограмму лучом лазера как появляется объёмное изображение. Предметы находятся в глубине фотопластинки, как отражение в зеркале.

С помощью голографии можно получать такие объёмные изображения, которые создают полную иллюзию реальности наблюдаемых предметов – зрительное ощущение объемности и цвета, включая все оттенки цветов и ракурса. На голограмме изображение предмета настолько совершенно и правдоподобно, что наблюдатель воспринимает его как реально существующий предмет.

Голограмма может быть плоской или объёмной. Чем больше объём голограммы (толщина светочувствительной плёнки), тем лучше реализуются все её свойства.

Голограмма отличается от обычной фотографии так же, как скульптура от картины. В обычной фотографии точка изображения на фотопластинке соответствует некоторой точке объекта. В голографии каждая точка объекта испускает рассеянную волну, которая попадает на всю поверхность голограммы. В результате любая точка объекта соответствует всей поверхности голограммы: если разбирать фотопластинку, на которой зарегистрирована голограмма, любой её части достаточно для того, чтобы восстановить изображение рассеивающего объекта в трёх измерениях. Это напоминает ситуацию, когда разбивается объектив. С помощью любого из его осколков можно получить изображение предмета.

В голографии используется свойство когерентности лазерного луча: волновая поверхность (волновой фронт) некоторого луча записывается в форме интерференционных полос на светочувствительный материал или фотопластинку, которая называется голограммой. При считывании голограммы восстанавливается исходный волновой фронт. Иными словами, лазерный луч расщепляется на два луча, один из которых проецируется на объект съёмки, и, отражённый от этого объекта, свет попадает на светочувствительный материал; второй луч непосредственно проецируется на светочувствительный материал.

С помощью этих двух лучей записывается интерференционная картина. Когда на изготовленную голограмму проецируется лазерный луч, то всплывает объёмное изображение объекта съёмки. Этот процесс называется восстановлением. Если рассматривать голограмму в микроскоп, то видна система чередующихся светлых и тёмных полос. Интерференционный узор реальных объектов весьма сложен.

Голограмму можно изготовить и иным способом, благодаря которому объёмное изображение можно увидеть при обычном свете.

Поскольку голограмма позволяет записывать изображение вплоть до фазовых составляющих светового луча, то на ней можно хранить трёхмерную информацию об объекте съёмки. В настоящее время эта технология используется в считывателях штрихового кода, звукоснимателях для оптических дисков, также её можно успешно использовать для преобразования информации в оптических компьютерах.

Большинство разрабатываемых и внедряемых способов голографической регистрации и обработки информационных массивов имеют чаще всего вид печатных документов. Голограмма представляет собой оптический элемент, формирующий изображение без помощи внешней оптики, что является важнейшим преимуществом. На одну голограмму можно нанести до 150 изображений, причём эти изображения совершенно не мешают друг другу при их воспроизведении. Необходимо только соблюдать угол, под которым каждое изображение записывалось. Голограмма помехоустойчива, порча её некоторой части не приводит к потере всего изображения. Поскольку каждая точка объекта записывается практически на всей площади голограммы, царапины, пыль, посторонние включения в эмульсию вызывают лишь незначительные ухудшения изображения и снижение его яркости.

На квадратном сантиметре поверхности плёнки можно вместить 100 млн бит информации. А на пластинку калий-брома размером 2,5*2,5*0,2 см можно записать около 300 тысяч изображений документной информации, приблизительно целый архив большой библиотеки.

Изобретение голограмм имеет огромное значение. Развивающаяся вычислительная техника требует долговременных и запоминающих устройств с большим объёмом памяти. Электронная память успешно справляется с этой работой. Но ещё больше подходят для этих целей голографические системы памяти. Ёмкость голографической памяти может составить 10 6 – 10 8 бит. В течении микросекунд она выбирает данные из ячеек памяти.

Заключение

Рассмотрев данную тему можно сказать, что с развитием науки и техники будут появляться новые носители информации, более совершенные, которые будут вытеснять устаревшие носители информации, которые мы используем сейчас.

Широкое распространение оптических дисков связано с целым рядом их преимуществ по сравнению с магнитными носителями, а именно: высокая надёжность при хранении, большой объём сохраняемой информации, записывание на одном диске звуковой, графической и буквенно-цифровой, быстрота поиска, экономичное средство хранения и предоставления информации, они обладают хорошим соотношением «качество/цена».

Что же касается жестких дисков, то без них пока ещё ни один компьютер не обходился. В развитии жёстких дисков отчётливо прослеживается основная тенденция – постепенное повышение плотности записи, сопровождающееся увеличением скорости вращения шпиндельной головки и уменьшением времени доступа к информации, а в конечном счёте – увеличением производительности. Создание новых технологий постоянно усовершенствует этот носитель, он меняет свою ёмкость до 80 – 175 Гбайт. В более отдалённой перспективе ожидается появления носителя, в котором роль магнитных частиц будут играть отдельные атомы. В результате его ёмкость в миллиарды раз превысит существующие в настоящее время стандарты. Также есть одно преимущество утерянную информацию можно восстановить с помощью определённых программ.

Совершенствование технологии флэш-памяти идёт в направлении увеличения ёмкости, надёжности, компактности, многофункциональности носителей, а также снижения их стоимости.

На стадии разработки находятся голографические цифровые носители информации ёмкостью до 200 Гбайт. Они имеют форму диска, состоящего из трёх слоёв. На стеклянную подложку толщиной 0,5 мм наносится записывающий (рабочий) слой толщиной 0,2 мм и полумиллиметровый прозрачный защитный слой с отражающим покрытием.

Будущее развитие документа связано с компьютеризацией документно-коммуникационной системы, при этом традиционные виды документов сохранятся в информационном обществе наряду с нетрадиционными видами носителей информации, обогащая и дополняя друг друга.

Документы, будучи массовым общественным продуктом, отличаются сравнительно низкой долговечностью. Во время своего функционирования в оперативной среде и особенно при хранении они подвергаются многочисленным негативным воздействиям, а носители не только подвергаются повреждениям во внешней среде, они подвержены техническому (по уровню развития оборудования) и логическому (связано с содержанием информации, программным обеспечением и стандартам сохранности информации) старению.

В связи с этими факторами активно ведутся работы по созданию компактных носителей, работающих с атомами и молекулами. Плотность упаковки элементов, собранных из атомов, в тысячи раз больше, чем в современной микроэлектронике. В результате один компакт-диск, изготовленный по такой технологии, может заменить тысячи лазерных дисков.

Стремительное развитие новейших информационных технологий приводит, таким образом, к созданию всё новых, более информационно ёмких, надёжных и доступных по цене носителей документированной информации.

Будущие документоведы должны быть готовы к этому психологически, теоретически и технологически. Нам необходимо идти «в ногу со временем», так как документоведение неразрывно связано с информатикой, где наука не стоит на одном месте.

Когда-нибудь в России будет использоваться многофункциональный носитель, в котором будет храниться информация о человеке, позволяющий его использование одновременно как документ: устанавливающий личность, несущий в себе информацию банковских карт, медицинские данные о заболеваниях, его можно будет использовать в транспорте, библиотеке и т. д. Это всё будет возможным только при развитии документоведения, информатики, юриспруденции, и будет зависеть от людей готовы ли они к таким глобальным переменам.

Используемая литература:

1. ГОСТ З 51141-98. Делопроизводство и архивное дело. Термины и определения. М.: Изд-во стандартов, 1998.

2. Кушнаренко Н.Н. Документоведение. Учебник. – К.: Знання, 2006.

3. Ларьков Н.С. Документоведение. – М.: Восток-Запад, 2006.

4. Большая энциклопедия Кирилла и Мефодия на DVD. – ООО «Уральский электронный завод», 2007. Лиц. ВАФ № 77-15


ГОСТ З 51141-98. Делопроизводство и архивное дело. Термины и определения. М.: Изд-во стандартов, 1998.

Кушнаренко Н.Н. Документоведение. – К.: Знання, 2006. – С. 432.

Ларьков Н.С. Документоведение. – М.: Восток-Запад, 2006. – С. 174.

Большая энциклопедия Кирилла и Мефодия на DVD. – ООО «Уральский электронный завод», 2007. Лиц. ВАФ № 77-15

Кушнаренко Н.Н. Документоведение. – К.: Знання, 2006. – С. 451.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

КУРСОВАЯ РАБОТА

ВИДЫ НОСИТЕЛЕЙ ИНФОРМАЦИИ

Введение

1. История

4.4 Сменные магнитные диски

6. Твердотельный накопитель

Заключение

Список используемой литературы

Введение

Носитель информации - физическая среда, непосредственно хранящая информацию. Основным носителем информации для человека является его собственная биологическая память (мозг человека). Собственную память человека можно назвать оперативной памятью. Здесь слово “оперативный” является синонимом слова “быстрый”. Заученные знания воспроизводятся человеком мгновенно. Собственную память мы еще можем назвать внутренней памятью, поскольку ее носитель - мозг - находится внутри нас.

Носитель информации - это строго определённая часть конкретной информационной системы, служащая для промежуточного хранения или передачи информации.

Основа современных информационных технологий - это ЭВМ. Когда речь идет об ЭВМ, то можно говорить о носителях информации, как о внешних запоминающих устройствах (внешней памяти). Эти носители информации можно классифицировать по различным признакам, например, по типу исполнения, материалу, из которого изготовлен носитель и т.п.

Основной функцией внешней памяти компьютера является способность долговременно хранить большой объем информации (программы, документы, аудио- и видеоклипы и т.д.). Устройство, которое обеспечивает запись - считывание информации, называется накопителем или дисководом, а хранится информация на носителях (например, дискетах).

В ходе реферата рассмотрим основные виды носителей информации.

1. История

Необходимость обмена информацией, сохранения письменных свидетельств о своей жизни и т.п. существовала у человека всегда. За всю историю человечества было перепробовано множество носителей информации. Так как носитель обладает рядом параметров, эволюция носителя информации определялась тем, какие требования к нему предъявлялись.

Древние времена. Древние люди на скалах изображали зверей, на которых они охотились. Однако угольные, глиняные, меловые рисунки смывало дождём, и для увеличения надёжности хранения информации первобытные художники стали выбивать силуэты животных на скалах острым камнем. Хотя камень повысил сохранность информации, скорость её записи и передача оставляли желать лучшего. Человек начал использовать для записи глину, которая имела свойства камня (сохранность информации), а её пластичность, удобство записи позволяли повысить эффективность записи.

Возможность эффективной записи способствует появлению письменности. Более пяти тысяч лет назад появляется (достижение шумерской цивилизации, территория современного Ирака) письменность на глине (уже не рисунки, а похожие на буквы значки и пиктограммы). Шумеры выдавливали знаки на табличках из сырой глины заострённой «клином» тростниковой палочкой (отсюда и название - клинопись). В ящиках («папках») хранились большие документы из десятков глиняных «страниц». Глина была тяжела для больших текстов, потребность в которых возрастала. Поэтому на смену ей должен был прийти другой носитель.

Египет: папирус. В начале третьего тысячелетия до н. э. в Египте появляется новый носитель, обладающий улучшенными некоторыми параметрами по сравнению с глиняными табличками. Там научились делать почти настоящую бумагу из папируса (высокого травянистого растения). Недостатком данного носителя являлось то, что со временем он темнел и ломался. Дополнительным недостатком стало то, что египтяне ввели запрет на вывоз папируса за границу.

Азия. Недостатки носителей информации (глина, папирус, воск) стимулировали поиск новых носителей. На этот раз сработал принцип «всё новое - хорошо забытое старое»: в Персии для письма издревле использовался дефтер - высушенные шкуры животных (в турецком и родственных ему языках слово «дефтер» и сейчас означает тетрадь), о чём вспомнили греки. Жители греческого города Пергам (первыми переняли древнюю технологию) усовершенствовали процесс выделки шкур и во II веке до н. э. начали производство пергамента. Достоинства нового носителя - высокая надёжность хранения информации (прочность, долговечность, не темнел, не пересыхал, не трескался, не ломался), многоразовость (например, в сохранившемся молитвеннике Х века учёные обнаружили несколько слоёв записей, сделанных вдоль и поперёк, стёртых и зачищенных, а с помощью рентгена там обнаружился древнейший трактат Архимеда).

Как и в других странах, в Юго-Восточной Азии испробовали множество разных способов записи и сохранения информации:

Выжигание на узких бамбуковых пластинах со скреплением шнурами в «бамбуковые книги» (недостаток - занимают много места, низкая износостойкость шнуров);

Письмо на: шёлке (недостаток - дороговизна шёлка), сшиваемые в «книгу» листья пальм.

Из-за недостатков предыдущих носителей китайский император Лю Чжао приказал найти им достойную замену, и один из чиновников (Цай Лунь) в 105 г. н. э. разработал способ производства бумаги (который не сильно изменился и по сей пор) из древесных волокон, соломы, травы, мха, тряпья, пакли, растительных отходов и т. п.

Европа. На территории Европы высокоразвитые народы (греки и римляне) нащупывали свои способы записи. Сменяются множество различных носителей: свинцовые листы, костяные пластинки и т. д.

Начиная с VII в. до н. э. запись производится острой палочкой - стилусом (как и на глине) на деревянных дощечках, покрытых слоем податливого воска. Стирание информации производилось обратным тупым концом стилуса. Скрепляли такие дощечки по четыре штуки. Однако на воске надписи недолговечны, и проблема сохранения записей была весьма актуальной.

Америка. В XI - XVI вв. коренные народы Южной Америки придумали узелковое письмо «кипу» (в переводе с языка индейцев кечуа - узел). Из верёвок (к ним привязывали ряды шнурков) составлялись «сообщения». Тип, число узелков, цвета и количества нитей, их расположения и переплетения представлял собой «кодировку» («алфавит») кипу.

Нанизанными на шнуры небольшими раковинами кодировали свои сообщения индейские племена Северной Америки. Этот вид письменности назывался «вампум» - от индейского слова wampam - белые бусы. Переплетения шнуров образовывали полоску, которую обычно носили как пояс. Комбинацией цветных ракушек и рисунков на них могли составляться целые послания.

Древняя Русь. Как носитель на Руси использовалась берёста (верхний слой берёзовой коры). Буквы на ней прорезывали писалом (костяная или металлическая палочка). Также применялось узелковое письмо, до сих пор сохранилось выражение "завязать узелок на память".

К концу XVI в. появляется своя бумага.

Средневековье. Как и в античном мире, так и в Средневековье восковые таблички использовались в качестве записных книжек, для хозяйственных пометок и для обучения детей письму.

Новое время. В XX веке для хранения информации начала использоваться тонкая железная проволока (20-е годы), магнитная лента (1928 г.), магнитные (середина 1960-х годов) и оптические диски (начало 1980-х годов). В 1945 г. Джон фон Нейман (1903-1957), американский ученый, выдвинул идею использования внешних запоминающих устройств для хранения программ и данных. Нейман разработал структурную принципиальную схему компьютера. Схеме Неймана соответствуют и все современные компьютеры

Современность. В XXI веке на смену оптическим и магнитным носителям пришли полупроводниковые микросхемы памяти. Жёсткие диски начинают вытесняться аналогичными полупроводниковыми.

Исторически первыми носителями информации были перфоленточные и перфокарточные устройства ввода-вывода. Вслед за ними пришли внешние записывающие устройства в виде магнитных лент, сменных и постоянных магнитных дисков и магнитных барабанов.

Магнитные ленты хранят и используют намотанными на катушки. Выделялись катушки двух видов: подающие и принимающие. Ленты поставляются пользователям на подающих катушках и не требуют дополнительной перемотки при установке их в накопители. Лента на катушку наматывается рабочим слоем внутрь. Магнитные ленты относятся к накопителям непрямого доступа. Это значит, что время поиска любой записи зависит от ее местоположения на носителе, так как физическая запись не имеет своего адреса и чтобы её просмотреть необходимо просмотреть предыдущие. К запоминающим устройствам прямого доступа относятся магнитные диски и магнитные барабаны. Основная особенность их заключается в том, что время поиска любой записи не зависит от ее местоположения на носителе. Каждая физическая запись на носителе имеет адрес, по которому обеспечивается непосредственный доступ к ней, минуя остальные записи. Следующим видом записывающих устройств стали пакеты сменных магнитных дисков, состоящие из шести алюминиевых дисков. Ёмкость всего пакета составляла 7,25 Мбайт.

2. Классификация носителей информации

Вариант классификации носителей информации, используемых в компьютерной технике, представлен на рисунке:

По форме сигнала, используемый для записи данных, различают аналоговые и цифровые носители. Для перезаписи информации с аналогового носителя на цифровой или наоборот необходимо сигнала.

Цифровые носители информации - компакт-диски, дискета, карты памяти

Аналоговые носители информации - магнитофонная и бабина кассеты

По назначению различают носители:

Для использования на различных устройствах;

Вмонтированы в определенное устройство.

По устойчивости записи и возможностью перезаписи:

Постоянные запоминающие устройства (ПЗУ), содержание которых не может быть изменен конечным пользователем (например, CD-ROM, DVD-ROM). ПЗУ в рабочем режиме допускает только считывание информации;

Записываемые устройства, в которые конечный пользователь может записать информацию только один раз (например, CD-R, DVD-R,DVD + R, BD-R);

Перезаписываемые устройства (например, CD-RW, DVD-RW, DVD + RW, BD-RE, магнитная лента и т.п.);

Оперативные устройства обеспечивают режим записи, хранения и считывания информации в процессе ее обработки. Быстрые, но дорогие ОЗУ (SRAM, статические ОЗУ) строятся на основе триггеров, медленные, но дешевые разновидности (DRAM, динамические ОЗУ) строятся на основе конденсатора. В обоих видах оперативной памяти информация исчезает после отключения от источника тока. Динамические ОЗУ требуют периодического обновления содержимого - регенерации.

По физическому принципу:

Перфорационные (с отверстиями или вырезами) - перфокарта, перфолента;

Магнитные - магнитная лента, магнитные диски;

Оптические - оптические диски CD, DVD, Blu-ray Disc;

Магнитооптические - магнитооптический компакт-диск (CD-MO);

Электронные (используют эффекты полупроводников) - карты памяти, флэш-память.

По конструктивным (геометрическими) особенностями:

Дисковые (магнитные диски, оптические диски, магнитооптические диски);

Ленточные (магнитные ленты, перфоленты);

Барабанные (магнитные барабаны);

Барточные (банковские карты, перфокарты, флеш-карты, смарт-карты);

Иногда носителями информации также называют объекты, чтение информации из которых не требуют специальных устройств - например бумажные носители.

Емкость цифрового носителя означает количество информации, которую на него можно записать, ее измеряют в специальных единицах - байтах, а также в их производных - килобайтах, мегабайтах и т.д., или же в кибибайтах, мебибайтах подобное. Например, емкость распространенных CD - носителей составляет 650 или 700 МБ, DVD-5 - 4,37 ГБ, двухслойных DVD 8,7 гб, современных жестких дисков - до 10 Тб (на 2009 год).

3. Ленточные носители информации

Ленточные носители информации используются для резервного копирования с целью обеспечения сохранности данных. В качестве таких устройств применяется стример, носителем информации в них используются магнитные ленты в кассетах (объём до 60 Гб) и ленточных картриджах (объём до 160 Гб).

Магнитная лента - носитель магнитной записи, представляющий собой тонкую гибкую ленту, состоящую из основы и магнитного рабочего слоя. Рабочие свойства магнитной ленты характеризуются её чувствительностью при записи и искажениями сигнала в процессе записи и воспроизведения. Наиболее широко применяется многослойная магнитная лента с рабочим слоем из игольчатых частиц магнитно-твёрдых порошков гамма-окиси железа, двуокиси хрома и гамма-окиси железа, модифицированной кобальтом, ориентированных обычно в направлении намагничивания при записи.

4. Дисковые носители информации

Дисковые носители представляют гибкие и жёсткие, сменные и несменные, магнитные, магнито-оптические и оптические диски и дискеты.

Дисковые носители информации относятся к машинным носителям с прямым доступом. Понятие прямой доступ означает, что ПК может «обратиться» к дорожке, на которой начинается участок с искомой информацией или куда нужно записать новую информацию.

Имеются и другие разновидности дисковых носителей информации, например, магнитооптические диски, но ввиду их малой распространенности мы их рассматривать не будем. носитель информация гибкий жесткий

4.1 Накопители на гибких магнитных дискетах

Это устройство использует в качестве носителя информации гибкие магнитные диски - дискеты, которые могут быть 5-ти или 3-х дюймовыми. Дискета - это магнитный диск вроде пластинки, помещенный в «конверт». В зависимости от размера дискеты изменяется ее емкость в байтах. Если на стандартную дискету размером 5"25 дюйма помещается до 720 Кбайт информации, то на дискету 3"5 дюйма уже 1,44 Мбайта. Дискеты универсальны, подходят на любой компьютер того же класса оснащенный дисководом, могут служить для хранения, накопления, распространения и обработки информации. Дисковод - устройство параллельного доступа, поэтому все файлы одинаково легко доступны. Диск покрывается сверху специальным магнитным слоем, который обеспечивает хранение данных. Информация записывается с двух сторон диска по дорожкам, которые представляют собой концентрические окружности. Каждая дорожка разделяется на секторы. Плотность записи данных зависит от плотности нанесения дорожек на поверхность, т.е. числа дорожек на поверхности диска, а также от плотности записи информации вдоль дорожки. К недостаткам относятся маленькая емкость, что делает практически невозможным долгосрочное хранение больших объемов информации, и не очень высокая надежность самих дискет. В настоящее время дискеты практически не используются.

Некоторое время назад дискеты были самым популярным средством передачи информации с компьютера на компьютер, т.к. интернет в те времена был большой редкостью, компьютерные сети тоже, а устройства для чтения-записи компакт дисков стоили очень дорого.

Дискета - портативный магнитный носитель информации, используемый для многократной записи и хранения данных сравнительно небольшого объема. Этот вид носителя был особенно распространён в 1970-х - начале 2000-х гг.

Дискеты требуют аккуратного обращения. Они могут быть повреждены, если дотрагиваться до записывающей поверхности; писать на этикетке дискеты карандашом или шариковой ручкой; сгибать дискету; перегревать дискету (оставлять на солнце или около батареи отопления); подвергать дискету воздействию магнитных полей.

В целях сохранения информации гибкие магнитные диски следует предохранять от воздействия сильных магнитных полей и нагревания, так как это может привести к размагничиванию носителя и потере информации.

4.2 Накопители на жестком магнитном диске

Если гибкие диски - это средство переноса данных между компьютерами, то жесткий диск - информационный склад компьютера.

Жёсткие магнитные диски предназначены для постоянного хранения информации, часто используемой в работе и представляют пакет жёстко скреплённых между собой 4 - 16 дисков, размещённых в герметическом корпусе. Первые жесткие магнитные диски состояли из двух дисков диаметром 3,5 дюйма и получили свое название по ассоциации с известным двуствольным ружьем фирмы Винчестер. Они имели объём 5 - 10 Мб. В дальнейшем количество дисков и ёмкость «жестких» дисководах увеличились, при этом ёмкость современных устройств варьируется от 40 до 200 и более Гб.

Является логическим продолжением развития технологии магнитного хранения информации. Основные достоинства:

Большая емкость;

Простота и надежность использования;

Возможность обращаться к множеству файлов одновременно;

Высокая скорость доступа к данным.

Из недостатков можно выделить лишь отсутствие съемных носителей информации, хотя в настоящее время используются внешние винчестеры и системы резервного копирования.

В компьютере предусмотрена возможность с помощью специальной системной программы условно разбивать один диск на несколько. Такие диски, которые не существуют как отдельное физическое устройство, а представляют лишь часть одного физического диска, называются логическими дисками. Логическим дискам присваиваются имена, в качестве которых используются буквы латинского алфавита [С:], , [Е:], и т. д.

4.3 Накопители на оптических дисках

Компакт-диск («CD», «Shape CD», «CD-ROM», «КД ПЗУ») - оптический носитель информации в виде диска с отверстием в центре, информация с которого считывается с помощью лазера. Изначально компакт-диск был создан для цифрового хранения аудио (Audio-CD), однако в настоящее время широко используется как устройство хранения данных широкого назначения (CD-ROM). Аудио-компакт-диски по формату отличаются от компакт-дисков с данными, и CD-плееры обычно могут воспроизводить только их (на компьютере, конечно, можно прочитать оба вида дисков). Встречаются диски, содержащие как аудиоинформацию, так и данные - их можно и послушать на CD-плеере, и прочитать на компьютере.

Оптические диски имеют обычно поликарбонатную или стеклянную термообработанную основу. Рабочий слой оптических дисков изготавливают в виде тончайших плёнок легкоплавких металлов (теллур) или сплавов (теллур-селен, теллур-углерод и др.), органических красителей. Информационная поверхность оптических дисков покрыта миллиметровым слоем прочного прозрачного пластика (поликарбоната). В процессе записи и воспроизведения на оптических дисках роль преобразователя сигналов выполняет лазерный луч, сфокусированный на рабочем слое диска в пятно диаметром около 1 мкм. При вращении диска лазерный луч следует вдоль дорожки диска, ширина которой также близка к 1 мкм. Возможность фокусировки луча в пятно малого размера позволяет формировать на диске метки площадью 1 - 3 мкм. В качестве источника света используются лазеры (аргоновые, гелий-кадмиевые и др.). В результате плотность записи оказывается на несколько порядков выше предела, обеспечиваемого магнитным способом записи. Информационная ёмкость оптического диска достигает 1 Гбайт (при диаметре диска 130 мм) и 2 - 4 Гбайт (при диаметре 300 мм).

Широкое применение в качестве носителя информации получили также магнитооптические компакт-диски типа RW (Re Writeble). На них запись информации осуществляется магнитной головкой с одновременным использованием лазерного луча. Лазерный луч нагревает точку на диске, а электромагнит изменяет магнитную ориентацию этой точки. Считывание же производится лазерным лучом меньшей мощности.

Во второй половине 1990-х годов появились новые, весьма перспективные носители документированной информации - цифровые универсальные видеодиски DVD (Digital Versatile Disk) типа DVD-ROM, DVD-RAM, DVD-R с большой ёмкостью (до 17 Гбайт).

По технологии применения оптические, магнитооптические и цифровые компакт-диски делятся на 3 основных класса:

1. Диски с постоянной (нестираемой) информацией (CD-ROM). Это пластиковые компакт-диски диаметром 4,72 дюйма и толщиной 0,05 дюйма. Они изготавливаются с помощью стеклянного диска-оригинала, на который наносится фоторегистрирующий слой. В этом слое лазерная система записи формирует систему питов (меток в виде микроскопических впадин), которая затем переносится на тиражируемые диски-копии. Считывание информации осуществляется также лазерным лучом в оптическом дисководе персонального компьютера. CD-ROM обычно обладают ёмкостью 650 Мбайт и используются для записи цифровых звуковых программ, программного обеспечения для ЭВМ и т.п.;

2. Диски, допускающие однократную запись и многократное воспроизведение сигналов без возможности их стирания (CD-R; CD-WORM - Write-Once, Read-Many - один раз записал, много раз считал). Используются в электронных архивах и банках данных, во внешних накопителях ЭВМ. Они представляют собой основу из прозрачного материала, на которую нанесён рабочий слой;

3. Реверсивные оптические диски, позволяющие многократно записывать, воспроизводить и стирать сигналы (CD-RW; CD-E). Это наиболее универсальные диски, способные заменить магнитные носители практически во всех областях применения. Они аналогичны дискам для однократной записи, но содержат рабочий слой, в котором физические процессы записи являются обратимыми. Технология изготовления таких дисков сложнее, поэтому они стоят дороже дисков для однократной записи.

В настоящее время оптические (лазерные) диски являются наиболее надёжными материальными носителями документированной информации, записанной цифровым способом. Вместе с тем активно ведутся работы по созданию ещё более компактных носителей информации с использованием так называемых нанотехнологий, работающих с атомами и молекулами. Плотность упаковки элементов, собранных из атомов, в тысячи раз больше, чем в современной микроэлектронике. В результате один компакт-диск, изготовленный по нанотехнологии, может заменить тысячи лазерных дисков.

4.4 Сменные магнитные диски

Это гибкие диски ZIP и JAZ, диаметром 3,5”, емкостью 25-270 и более Мб, несовместимые с флоппи-дисками. Скорость вращения - 2941 об/мин, среднее время поиска равно 29 мс. Предназначены для длительного хранения информации и переноса её на другие ПК. Многие используют Zip устройства - это магнитные дискеты, которые имеют высокую емкость. Работает она на подобии простой дискеты. Проблемы с читаемостью могут быть такими же, как и с дисками.

5. Электронные носители информации

Вообще говоря, все рассмотренные ранее носители тоже косвенно связаны с электроникой. Однако имеется вид носителей, где информации хранится не на магнитных оптических дисках, а в микросхемах памяти. Эти микросхемы выполнены по FLASH-технологии, поэтому такие устройства иногда называют FLASH-дисками (в народе просто «флэшка»). Микросхема, как можно догадаться, диском не является. Однако операционные системы носители информации с FLASH-памятью определяют как диск (для удобства пользователя), поэтому название «диск» имеет право на существование.

Флэш-память (англ. Flash-Memory) - разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти. Флэш-память может быть прочитана сколько угодно раз, но писать в такую память можно лишь ограниченное число раз (обычно около 10 тысяч раз). Несмотря на то, что такое ограничение есть, 10 тысяч циклов перезаписи - это намного больше, чем способна выдержать дискета или CD-RW. Стирание происходит участками, поэтому нельзя изменить один бит или байт без перезаписи всего участка (это ограничение относится к самому популярному на сегодня типу флэш-памяти - NAND). Преимуществом флэш-памяти над обычной является её энерго-независимость - при выключении энергии содержимое памяти сохраняется. Преимуществом флэш-памяти над жёсткими дисками, CD-ROM-ами, DVD является отсутствие движущихся частей. Поэтому флэш-память более компактна, дешева (с учётом стоимости устройств чтения-записи) и обеспечивает более быстрый доступ. В отличие от магнитных, оптических и магнитооптических носителей, здесь не требуется применение дисководов с использованием сложной прецизионной механики. Их отличает также бесшумная работа.

Самый популярный и дешёвый носитель - микросхема памяти с управляющим контроллером и USB-разъёмом. Они широко варьируются по ёмкости (от 1 до 256 Гб), но зачастую пользователи забывают ещё об одном главном параметре флешки - о её быстродействии. Как правило, скорость записи таких накопителей составляет 5 - 7 мб/сек., а скорость чтения 15 - 20 мб/сек. При выборе следует обращать внимание на такие надписи, как «ultra fast» и «high-speed». Эти устройства обладают высокой скоростью. Этот вид носителей перестаёт работать в основном по причине блокирования управляющего контроллера - их хватает примерно на 5 лет, при этом в качестве архивирующих устройств использовать их не рекомендуется. Флешка, как и её "родственница" - карта памяти, всегда "гибнет" целиком.

6. Твердотельный накопитель

Твердотельный накопитель (англ. solid-state drive, SSD) - компьютерное немеханическое запоминающее устройство на основе микросхем памяти. Кроме них, SSD содержит управляющий контроллер. Наиболее распространенный вид твердотельных накопителей использует для хранения информации флеш-памяти типа NAND, однако существуют варианты, в которых накопитель создается на базе DRAM-памяти, снабженной дополнительным источником питания - аккумулятором.

В настоящее время твердотельные накопители используются не только в компактных устройствах - ноутбуках, нетбуках, коммуникаторах и смартфонах, планшетах, но могут быть использованы и в стационарных компьютерах для повышения производительности.

По сравнению с традиционными жёсткими дисками (HDD), твердотельные накопители имеют меньший размер и вес, но в несколько раз (6 - 7) большую стоимость за гигабайт и значительно меньшую износостойкость (ресурс записи).

Небольшие твердотельные накопители могут встраиваться в один корпус с магнитными жёсткими дисками, образуя гибридные жёсткие диски (SSHD, Solid-state hybrid drive). Флэш-память в них может использоваться либо в качестве буфера (кэша) небольшого объёма (4 - 8 ГБ), либо, реже, быть доступной как отдельный накопитель (Dual-drive hybrid systems). Подобное объединение позволяет воспользоваться частью преимуществ флеш-памяти (быстрый произвольный доступ) при сохранении небольшой стоимости хранения больших объёмов данных.

В настоящее время наиболее заметными компаниями, которые интенсивно развивают направление SSD-накопителей в своей деятельности, можно назвать Intel, Kingston, Samsung Electronics, Toshiba, SanDisk, Corsair, Renice, OCZ Technology, Crucial и ADATA.

В начале 2010-х годов на рынке были представлены SSD-накопители с объёмами 64, 80, 120, 256, 512 гигабайт, отдельные модели имеют ёмкость 0.7, 0.8, 1, 1.6 терабайт или более. За 2012 год поставки SSD составили около 34 миллионов устройств, основные рынки: потребительский, серверный, индустриальные применения. Цены на 128 ГБ SSD в 2013 году находились в пределах 70 - 85 долларов США.

Преимущества.

1. Отсутствие движущихся частей, отсюда:

Полное отсутствие шума (0 дБ);

Высокая механическая стойкость (кратковременно выдерживают порядка 1500 g);

2. Стабильность времени считывания файлов вне зависимости от их расположения или фрагментации.

3. Скорость чтения/записи выше, чем у распространенных жёстких дисков.

4. Количество произвольных операций ввода-вывода в секунду (IOPS) у SSD на несколько порядков выше, чем у жёстких дисков.

5. Низкое энергопотребление.

6. Широкий диапазон рабочих температур.

7. Намного меньшая чувствительность к внешним электромагнитным полям.

8. Малые габариты и вес.

Недостатки.

1. Цена гигабайта SSD-накопителей в несколько раз (6 -7 для наиболее дешевой флеш-памяти) выше цены гигабайта HDD (по состоянию на октябрь 2014 - 35 центов за гигабайт). К тому же стоимость SSD прямо пропорциональна их ёмкости, в то время как стоимость традиционных жёстких дисков зависит не только от количества пластин и медленнее растёт при увеличении объёма накопителя.

2. Применение в SSD-накопителях команды TRIM может сильно осложнить или сделать невозможным восстановление удалённой информации recovery-утилитами.

3. Невозможность восстановить информацию при электрических повреждениях. Так как контроллер и носители информации в SSD находятся на одной плате, то при превышении или значительном перепаде напряжения чаще всего сгорает весь SSD-носитель с безвозвратной потерей информации. Напротив, в жёстких дисках чаще сгорает только плата контроллера, что делает возможным восстановление информации с приемлемой трудоёмкостью.

Заключение

Рассмотрев данную тему можно сказать, что с развитием науки и техники будут появляться новые носители информации, более совершенные, которые будут вытеснять устаревшие носители информации, которые мы используем сейчас.

Широкое распространение оптических дисков связано с целым рядом их преимуществ по сравнению с магнитными носителями, а именно: высокая надёжность при хранении, большой объём сохраняемой информации, записывание на одном диске звуковой, графической и буквенно-цифровой, быстрота поиска, экономичное средство хранения и предоставления информации, они обладают хорошим соотношением «качество - цена».

Что же касается жестких дисков, то без них пока ещё ни один компьютер не обходился. В развитии жёстких дисков отчётливо прослеживается основная тенденция - постепенное повышение плотности записи, сопровождающееся увеличением скорости вращения шпиндельной головки и уменьшением времени доступа к информации, а в конечном счёте - увеличением производительности. Создание новых технологий постоянно усовершенствует этот носитель, он меняет свою ёмкость до 80 - 175 Гбайт. В более отдалённой перспективе ожидается появления носителя, в котором роль магнитных частиц будут играть отдельные атомы.

В результате его ёмкость в миллиарды раз превысит существующие в настоящее время стандарты.

Также есть одно преимущество утерянную информацию можно восстановить с помощью определённых программ.

Совершенствование технологии флэш-памяти идёт в направлении увеличения ёмкости, надёжности, компактности, многофункциональности носителей, а также снижения их стоимости.

На стадии разработки находятся голографические цифровые носители информации ёмкостью до 200 Гбайт. Они имеют форму диска, состоящего из трёх слоёв. На стеклянную подложку толщиной 0,5 мм наносится записывающий (рабочий) слой толщиной 0,2 мм и полумиллиметровый прозрачный защитный слой с отражающим покрытием.

Список литературы

1. Росс Г.В. "Основы информатики и программирования"/ Г.В. Росс, В.Н. Дулькин, Л.А. Сысоева - М.: ПРИО, 1999г.

2. Информатика: Учебник. - 3-е перераб.изд./ под ред. Н.В.Макаровой - М.: Финансы и Статистика, 2002 г.

3. Левин В.И. "Носители информации в цифровом веке"/В.И.Левин - М.: КомпьютерПресс, 2000г. - 256 с.

4. https://ru.wikipedia.org

Размещено на Allbest.ru

...

Подобные документы

    Выпускаемые накопители информации. Основное описание внешних запоминающих устройств на гибких магнитных дисках. Физическое форматирование. Сущность накопителя на жестком магнитном диске. Описание работы стримера и оптических запоминающих устройств.

    реферат , добавлен 26.11.2008

    Информация-это отражение разнообразия, присущего объектам и явлениям реального мира. Понятие информации. Свойства информации. Классификация информации. Формы представления информации. Информация-мера определенности в сообщении. Достоверность информации.

    контрольная работа , добавлен 24.09.2008

    Изменение концентрации носителей и проводимости в приповерхностном слое полупроводника под действием электрического поля. Эффект поля в собственном и примесном полупроводниках. Механизмы рекомбинации носителей. Законы движения носителей в полупроводниках.

    презентация , добавлен 27.11.2015

    Развитие носителей информации. Звукозапись и процесс записи звуковой информации с целью её сохранения и последующего воспроизведения. Музыкальные механические инструменты. Первый двухдорожечный магнитофон. Звук и основные стандарты его записи.

    реферат , добавлен 25.05.2015

    Изучение радиотехнических систем передачи информации. Назначение и функции элементов модели системы передачи (и хранения) информации. Помехоустойчивое кодирование источника. Физические свойства радиоканала как среды распространения электромагнитных волн.

    реферат , добавлен 10.02.2009

    Накопители на магнитной ленте, накопители прямого доступа. Принципы работы накопителя на сменных магнитных дисках. Накопитель на гибких магнитных дисках. Накопитель на жестком магнитном диске - винчестер. Современные внешние запоминающие устройства.

    курсовая работа , добавлен 08.05.2009

    Особенности оптических систем связи. Физические принципы формирования каналов утечки информации в волоконно-оптических линиях связи. Доказательства уязвимости ВОЛС. Методы защиты информации, передаваемой по ВОЛС - физические и криптографические.

    курсовая работа , добавлен 11.01.2009

    Хранение больших объемов данных на внешних магнитных носителях. Произвольный метод доступа и управления RAMAC, физическая ёмкость дисков. Расхождение между двоичными значениями и десятичными в понимании единиц измерения ёмкости дисков и накопителей.

    реферат , добавлен 21.01.2010

    Радиоэлектронный канал. Структура радиоэлектронного канала утечки информации. Передатчики функциональных каналов связи. Виды утечки информации. Антенные устройства. Классификация помех. Экранирующие свойства некоторых элементов здания.

    доклад , добавлен 20.04.2007

    Проектирование помещения для хранения ценной информации. Возможные каналы утечки данных. Характеристики средств защиты информации. Съем информации за счет электромагнитных излучений проводных линий 220 B, выходящих за пределы контролируемой зоны.

Носитель информации – физическая среда, непосредственно хранящая информацию. Основным носителем информации для человека является его собственная биологическая память (мозг человека). Собственную память человека можно назвать оперативной памятью. Здесь слово “оперативный” является синонимом слова “быстрый”. Заученные знания воспроизводятся человеком мгновенно. Собственную память мы еще можем назвать внутренней памятью, поскольку ее носитель – мозг – находится внутри нас.

Носитель информации - строго определённая часть конкретной информационной системы, служащая для промежуточного хранения или передачи информации.

Основа современных информационных технологий – это ЭВМ. Когда речь идет об ЭВМ, то можно говорить о носителях информации, как о внешних запоминающих устройствах (внешней памяти). Эти носители информации можно классифицировать по различным признакам, например, по типу исполнения, материалу, из которого изготовлен носитель и т.п. Вот один из вариантов классификация носителей информации:

Ленточные носители информации

Магнитная лента - носитель магнитной записи, представляющий собой тонкую гибкую ленту, состоящую из основы и магнитного рабочего слоя. Рабочие свойства магнитной ленты характеризуются её чувствительностью при записи и искажениями сигнала в процессе записи и воспроизведения. Наиболее широко применяется многослойная магнитная лента с рабочим слоем из игольчатых частиц магнитно-твёрдых порошков гамма-окиси железа (у-Fе2О3), двуокиси хрома (СrО2) и гамма-окиси железа, модифицированной кобальтом, ориентированных обычно в направлении намагничивания при записи.

Дисковые носители информации относятся к машинным носителям с прямым доступом. Понятие прямой доступ означает, что ПК может «обратиться» к дорожке, на которой начинается участок с искомой информацией или куда нужно записать новую информацию .

Накопители на дисках наиболее разнообразны:

    Накопители на гибких магнитных дисках (НГМД), они же флоппи-диски, они же дискеты

    Накопители на жестких магнитных дисках (НЖМД), они же винчестеры (в народе просто «винты»)

    Накопители на оптических компакт-дисках:

    • CD-ROM (Compact Disk ROM)

В накопителях на гибких магнитных дисках (НГМД или дискетах) и накопителях на жестких магнитных дисках (НЖМД или винчестерах), в основу записи, хранения и считывания информации положен магнитный принцип, а в лазерных дисководах - оптический принцип.

Гибкие магнитные диски помещаются в пластмассовый корпус. Такой носитель информации называется дискетой. Дискета вставляется в дисковод, вращающий диск с постоянной угловой скоростью. Магнитная головка дисковода устанавливается на определенную концентрическую дорожку диска, на которую и записывается (или считывается) информация.

Информационная ёмкость дискеты невелика и составляет всего 1.44 Мбайт. Скорость записи и считывания информации также мала (около 50 Кбайт/с) из-за медленного вращения диска (360 об./мин).

Жесткие магнитные диски.

Жесткий диск (HDD - Hard Disk Drive) относится к несменным дисковым магнитным накопителям. Первый жесткий диск был разработан фирмой IBM в 1973 г. и имел емкость 16 Кбайт. Жесткие магнитные диски представляют собой несколько десятков дисков, размещенных на одной оси, заключенных в металлический корпус и вращающихся с высокой угловой скоростью. Скорость записи и считывания информации с жестких дисков достаточно велика (около 133 Мбайт/с) за счет быстрого вращения дисков (7200 об./мин).

В процессе работы компьютера случаются сбои. Вирусы, перебои энергоснабжения, программные ошибки - все это может послужить причиной повреждения информации, хранящейся на Вашем жестком диске. Повреждение информации далеко не всегда означает ее потерю, так что полезно знать о том, как она хранится на жестком диске, ибо тогда ее можно восстановить. Тогда, например, в случае повреждения вирусом загрузочной области, вовсе не обязательно форматировать весь диск (!), а, восстановив поврежденное место, продолжить нормальную работу с сохранением всех своих бесценных данных.

В жестких дисках используются достаточно хрупкие и миниатюрные элементы. Чтобы сохранить информацию и работоспособность жестких дисков, необходимо оберегать их от ударов и резких изменений пространственной ориентации в процессе работы.

Лазерные дисководы и диски.

В начале 80-х годов голландская фирма «Philips» объявила о совершенной ею революцией в области звуковоспроизведения. Ее инженеры придумали то, что сейчас пользуется огромной популярностью - Это лазерные диски и проигрыватели.

Лазерные дисководы используют оптический принцип чтения информации. На лазерных дисках CD (CD - Compact Disk, компакт диск) и DVD (DVD - Digital Video Disk, цифровой видеодиск) информация записана на одну спиралевидную дорожку (как на грампластинке), содержащую чередующиеся участки с различной отражающей способностью. Лазерный луч падает на поверхность вращающегося диска, а интенсивность отраженного луча зависит от отражающей способности участка дорожки и приобретает значения 0 или 1. Для сохранности информации лазерные диски надо предохранять от механических повреждений (царапин), а также от загрязнения. На лазерных дисках хранится информация, которая была записана на них в процессе изготовления. Запись на них новой информации невозможна. Производятся такие диски путем штамповки. Существуют CD-R и DVD-R диски информация на которые может быть записана только один раз. На дисках CD-RW и DVD-RW информация может быть записана/перезаписана многократно. Диски разных видов можно отличить не только по маркировки, но и по цвету отражающей поверхности.

Устройства на основе flash-памяти.

Flash-память - это энергонезависимый тип памяти, позволяющий записывать и хранить данные в микросхемах. Устройства на основе flash-памяти не имеют в своём составе движущихся частей, что обеспечивает высокую сохранность данных при их использовании в мобильных устройствах.

Flash-память представляет собой микросхему, помещенную в миниатюрный корпус. Для записи или считывания информации накопители подключаются к компьютеру через USB-порт. Информационная емкость карт памяти достигает 1024 Мбайт.